RAK ACADEMIC CENTRE

BA (HONS) ACCOUNTANCY

SEMESTER 1 EXAMINATION 2019/2020

QUANTITATIVE METHODS FOR ACCOUNTANTS

MODULE NO: ACC4018

Date: Thursday 16 $^{\text {th }}$ January 2020
Time: $1.00 \mathrm{pm}-4.00 \mathrm{pm}$

INSTRUCTIONS TO CANDIDATES:
There are four compulsory questions on this paper.

Answer ALL FOUR questions.
All questions carry equal marks.
Calculators may be used but full workings must be shown.

Formulae books, which contain statistical tables.

Graph paper (four sheets).

University of Bolton
RAK Academic Centre
BA (Hons) Accountancy
Semester 1 Examination 2019/20
Quantitative Methods for Accountants
Module No: ACC4018

Question 1

A chocolate manufacturer produces two types of chocolates: Star bar and Dream bar. Production of Star bar uses 12 g of cocoa and 1 minute of machine time. Whereas, production of Dream bar uses 6 g of cocoa and 5 minutes machine time.

In total 2000 g of cocoa and 460 minutes of machine time are available each day to the manufacturer. The manufacturer makes 15 p profit from each Star bar and 22 p profit from each Dream bar.
a) Arrange the given information into tabular form.
b) Translate the problem into a linear programming one, identifying and writing down the objective function and the constraints.
c) Plot the inequalities on a graph and identify the feasible region.
(10 marks)
d) Find the optimum solution that satisfies the objective function including the calculation of the iso-profit lines and illustrated clearly on the graph.
(10 marks)
(Total 25 marks)

University of Bolton
RAK Academic Centre
BA (Hons) Accountancy
Semester 1 Examination 2019/20
Quantitative Methods for Accountants
Module No: ACC4018

Question 2

A university student takes part in a javelin competition. They take three attempts at throwing the javelin and scoring the highest score.

The probabilities are as follows:
They have a 0.75 probability of successfully scoring the highest score at their first attempt.

If they succeed at the first attempt, the same probability applies on the next two attempts.

If they are not successful at any time, the probability of succeeding on any subsequent attempts is only 0.4.

Use a tree diagram to find the probabilities that:
a) Draw a tree diagram to show the probabilities of success or failure
b) She is successful on all her first three attempts.
c) She fails at the first attempt but succeeds on the next two.
d) She is successful just once in three attempts
e) She is still not successful after the third attempt

University of Bolton
RAK Academic Centre
BA (Hons) Accountancy
Semester 1 Examination 2019/20
Quantitative Methods for Accountants
Module No: ACC4018
Please turn the page

Question 3

The Table below shows a sample of 40 employee's age working at a textile company.

25	51	36	60	19	58	46	30
34	27	52	33	61	30	51	43
56	39	20	54	44	48	24	25
17	64	43	50	38	38	40	50
30	38	54	37	42	36	59	33

a) Produce a grouped frequency distribution (GFD) table for this data.
(5 marks)
b) Draw a histogram of the grouped frequency distribution, and on the same graph estimate the mode age.
c) From the GFD calculate the mean deviation
(5 marks)
d) From the GFD calculate the mean age.
e) Calculate the corresponding variance and standard deviation.

University of Bolton
RAK Academic Centre
BA (Hons) Accountancy
Semester 1 Examination 2019/20
Quantitative Methods for Accountants
Module No: ACC4018

Question 4

A factory producing aircraft warning lights wants to determine the relationship between the cost of output and the number of lights (units) produced.

The cost of output is thought to depend on the number of units produced.
The table below shows a record for a random sample over 10 months.
Data shows:

		Cost (£'000)
Month	Output (Units)	
		4
1	3	6
2	5	3
3	1	8
4	7	6
5	5	13
6	9	5
7	4	3
8	1	4
9	3	6

Required:

Please show all calculation workings.
a) Draw a scatter diagram of these results.
b) Calculate the equation of the least square regression line of " y on x " and then draw this line on the scatter diagram.
c) Calculate the Pearson's correlation coefficient, r and the coefficient of determination r^{2}.
d) Use the regression equation/line to predict the likely cost of 2 months if output is 2 , and 8 respectively.

STATISTICAL FORMULAE

FREQUENCY DISTRIBUTIONS

Required fractile from a GFD $=$ Lower class limit of fractile class + $\left[\begin{array}{ll}\text { Fractile item - cumulative frequency } & \text { Fractile } \\ \text { up to lower class limit of fractile class } & \times \\ \text { class } \\ \text { Fractile class frequency } & \text { interval }\end{array}\right]$
Mean $\overline{\mathbf{x}}=\frac{\text { sum of values }}{\text { total number of items }}=\frac{\sum \mathrm{x}}{\mathrm{n}}$
with GFD: $\overline{\mathrm{x}}=\frac{\sum(\mathrm{f} \times \mathrm{MP})}{\sum \mathrm{f}} \quad \mathrm{MP}=$ class Mid Point
Range $=$ Highest value - Lowest value
Quartile deviation $=\left(Q_{3}-Q_{1}\right) / 2$
Mean deviation $=\frac{\sum(x-\bar{x})}{n}$ The sign of $(x-\bar{x})$ must be ignored
with $G F D: \quad$ M.D. $=\frac{\sum(\mathrm{f} \times(\mathrm{MP}-\overline{\mathrm{x}}))}{\sum \mathrm{f}}$
Standard deviation $(s)=\sqrt{\left[\frac{\sum(x-\bar{x})^{2}}{n}\right]}$
If the mean is not a rounded number: $\mathrm{s}=\sqrt{\left[\frac{\sum \mathrm{x}^{2}}{\mathrm{n}}-\overline{\mathrm{x}}^{2}\right]}$
with GFD: $\mathrm{s}=\sqrt{\left[\frac{\sum\left(\mathrm{f} \times \mathrm{MP}^{2}\right)}{\sum \mathrm{f}}-\overline{\mathrm{x}}^{2}\right]}$
Variance: s^{2}
Coefficient of variation $=\frac{\mathbf{s}}{\overline{\mathbf{x}}} \times 100$
Pearson's Coefficient of Skewness $(\mathbf{S k})=\frac{3(\text { Mean }- \text { Median })}{\text { Standard Deviation }}$

CORRELATION

Regression line of " y on x ": $\quad y=a+b x$
where

$$
b=\frac{n \times \sum x y-\sum x \times \sum y}{n \times \sum x^{2}-\left(\sum x\right)^{2}} \quad \mathbf{a}=\frac{\sum y-b \times \sum x}{n} \quad \mathbf{n}=\text { number of pairs }
$$

Regression line of " x on y ": $\quad x=a+b y$
where

$$
\mathbf{b}=\frac{\mathrm{n} \times \sum \mathrm{yx}-\sum \mathrm{y} \times \sum \mathrm{x}}{\mathrm{n} \times \sum \mathrm{y}^{2}-\left(\sum \mathrm{y}\right)^{2}} \quad \mathbf{a}=\frac{\sum \mathrm{x}-\mathrm{b} \times \sum \mathrm{y}}{\mathrm{n}}
$$

Pearson product-moment Coefficient of Correlation (r)

$$
r=\frac{n \times \sum x y-\sum x \times \sum y}{\sqrt{\left(\left(n \times \sum x^{2}-\left(\sum x\right)^{2}\right)\left(n \times \sum y^{2}-\left(\sum y\right)^{2}\right)\right)}}
$$

Coefficient of determination $\quad r^{2}=b_{y x} \times b_{x y} \quad \Rightarrow \quad r=\sqrt{b_{y x} \times b_{x y}}$
Covariance: $\operatorname{Cov}(x, y)=\frac{\sum(x-\bar{x})(y-\bar{y})}{n} \quad \Rightarrow \quad r=\frac{\operatorname{Cov}(x, y)}{\left(s_{x} \times s_{y}\right)}$
Spearman's Coefficient of Rank Correlation: $\quad r^{\prime}=1-\frac{6 \sum d^{2}}{n\left(n^{2}-1\right)}$
where $\quad \mathbf{d}=$ the difference between the rankings of the same item in each series

PROBABILITY

Multiplication rule: the prob. of a sequential event is the product of all its elementary events

$$
\mathbf{P}(\mathbf{A} \cap \mathbf{B} \cap \mathbf{C} \cap \ldots)=\mathbf{P}(\mathbf{A}) \times \mathbf{P}(\mathbf{B}) \times \mathbf{P}(\mathbf{C}) \ldots
$$

Addition rule: the prob. of one of a number of mutually exclusive events occurring is the sum of the probabilities of the events

$$
\mathbf{P}(\mathbf{X} \cup \mathbf{Y} \cup \mathbf{Z} \cup \ldots)=\mathbf{P}(\mathbf{X})+\mathbf{P}(\mathbf{Y})+\mathbf{P}(\mathbf{Z}) \ldots
$$

Bayes' Theorem $\quad \mathbf{P}(\mathbf{E} \mid \mathbf{S})=\frac{\mathbf{P}(\mathbf{E}) \times \mathbf{P}(\mathbf{S} \mid \mathbf{E})}{\sum_{i}\left(\mathbf{P}\left(\mathbf{E}_{\mathrm{i}}\right) \times \mathbf{P}\left(\mathbf{S} \mid \mathbf{E}_{\mathrm{i}}\right)\right)}$
where
\mathbf{S} is the subsequent event and there are \mathbf{n} prior events, \mathbf{E}.

PRORABILITY DISTRIBUTIONS

ESTIMATION \& CONFIDENCE INTERVALS

- $\bar{x}, \boldsymbol{s}, \boldsymbol{p}$-sample mean, standard deviation, proportion/percentage
- μ, σ, π-population mean, standard deviation, proportion/percentage
$\Rightarrow \bar{x}$ is a point estimate of μ
s is a point estimate of σ
p is a point estimate of π
Confidence intervals for a population percentage or proportion

$$
\pi=p \pm \mathbf{z} \sqrt{\frac{p(100-p)}{n}} \quad \text { for a percentage } \quad \pi=p \pm \mathbf{z} \sqrt{\frac{p(1-p)}{n}} \quad \text { for a proportion }
$$

When using normal tables: $\alpha=100$ - confidence level
Estimation of population mean (μ) when σ is known

$$
\mu=\bar{x} \pm \mathbf{z} \sigma / \sqrt{n} \quad \text { (normal tables for } \mathbf{z} \text {) }
$$

Estimation of population mean (μ) for large sample size and σ unknown

$$
\mu=\bar{x} \pm \mathbf{z} s / \sqrt{n} \quad \text { (normal tables for } \mathbf{z})
$$

Estimation of population mean (μ) for small sample size and σ unknown

$$
\mu=\bar{x} \pm t s / \sqrt{n} \quad(t \text {-tables for } t)
$$

When using t-tables: $v=n-1$
Confidence intervals for paired (dependent) data

$$
\mu_{\mathrm{d}}=\overline{x_{\mathrm{d}}} \pm t s_{\mathrm{d}} / \sqrt{n_{\mathrm{d}}} \quad \text { where " } \mathrm{d} \text { " refers to the calculated differences }
$$

THNAMCHEMATHEMATICS

Simple interest $A_{n}=P\left(1+\frac{i}{100} \times n\right)$
Compound intereat $a A_{n+}=P\left(1+\frac{i}{100}\right)^{n}$
Effective APR $=\left(\left(1+\frac{i}{100}\right)^{n}-1\right) \times 100 \%$
Straight line depreciation $A_{n}=P\left(1-\frac{i}{100} \times n\right)$
Depreciation $A=P\left(1-\frac{i}{100}\right)^{n}$
The future value of an initial investment A_{0} is given by $A=A_{0}\left(1+\frac{i}{100}\right)^{n}$ and the present value of an accumulated inyestment A_{n} is given by $A_{0}=\frac{A n}{\left(1+\frac{i}{100}\right)^{n}}$ or
$A\left(1+\frac{i}{100}\right)^{-n}$ $A\left(1+\frac{i}{100}\right)^{-n}$

Loan account

If an annuity is purchased for a sum of A_{0} at a nate of $i \%$ compounded each period then the periodic tepayment is
$R=\frac{i A_{0}}{1-(1+i)^{-n}}$
sad the present value of the annuity A_{0} (the loan) is
$A_{0}=R \times \frac{(1+i)^{n}-1}{(1+i)^{n}}$ or equivalentil $\mathcal{A}_{0}=\frac{\mathrm{R}\left[1-(1+i)^{-n}\right]}{i}$

Savings account

A aqvings plan/zinking fund invested for n periods at a nominal rate of $; \%$ compounded each period with a periodic investment of $£_{1} P$ matures to $\$$ where
$S=P(1+i) \times\left(\frac{1+i)^{n}-1}{i}\right)$.

Table 2 Percentage points of the t-dlstrlbution

$v=$ degrees of freedom $\alpha=$ total percentage in tails

Table 3 Percentage points of the standard normal curve

[^0]
[^0]: $\alpha .=$ total percentage in tails

