UNIVERSITY OF BOLTON

SCHOOL OF ENGINEERING

BSc(Hons) MATHEMATICS

SEMESTER 2 EXAMINATIONS 2018/19

NUMERICAL ANALYSIS

MODULE NO: MMA5004

Date: Monday 20 May 2019

INSTRUCTIONS TO CANDIDATES: 1. There are FOUR questions.
2. Answer ALL questions.
3. Maximum marks for each part/question are shown in brackets.

1. (a) (i) Write down the second order Lagrange interpolating polynomial.
(ii) The integral $I(X)=\int_{0}^{X} f(x) d x$ has the following values:

$$
\begin{aligned}
& I(0.2)=0.030 \\
& I(0.4)=0.093 \\
& I(0.8)=0.230
\end{aligned}
$$

Use Lagrange interpolation with three points to estimate $I(0.6)$ quoting your estimate to two decimal places.
(b) (i) An nth degree Chebyshev polynomial may be defined recursively as

$$
T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x) .
$$

Given that $T_{0}(x)=1, T_{1}(x)=x$, obtain $T_{2}(x)$ and $T_{3}(x)$ and show that the roots of $T_{3}(x)=0$ are

$$
x_{1}=\frac{\sqrt{3}}{2}, x_{2}=0, x_{3}=\frac{-\sqrt{3}}{2} .
$$

(ii) Show that the substitution $z=\frac{2 x}{b-a}-\frac{a+b}{b-a}$ transforms the limits $[a, b]$ of the integral

$$
\int_{a}^{b} f(x) d x
$$

$$
\text { to }[-1,1] \text {. }
$$

(iii) Use $\int_{-1}^{1} \frac{f(x)}{\sqrt{1-x^{2}}} d x \simeq \frac{\pi}{3} \sum_{i=1}^{3} f\left(x_{i}\right)$ where x_{i} are the roots of $T_{3}(x)=0$, and the substitution from b (ii) to evaluate

$$
\int_{1}^{2} \frac{e^{2 x-3} d x}{\left(3 x-x^{2}-2\right)^{\frac{1}{2}}}
$$

2. (a) Use the method of undetermined coefficients to obtain the values of c_{0}, c_{1} and c_{2} in the quadrature formula

$$
\int_{x_{0}}^{x_{2}} f(x) d x \simeq \sum_{i=0}^{2} c_{i} f\left(x_{i}\right)
$$

and hence show that

$$
\int_{x_{0}}^{x_{2}} f(x) d x \simeq \frac{h}{3}\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)\right)
$$

where $x_{1}-x_{0}=x_{2}-x_{1}=h$
(b) Obtain the composite form of the quadrature formula from 3(a) for n strips and use this to evaluate

$$
I=\int_{0}^{1} e^{-x^{2}} d x
$$

correct to two decimal places.
3. (a) The modified Newton-Raphson formula for the solution of the equation $f(x)=0$ may be written as

$$
\begin{equation*}
x_{i+1}=x_{i}-\frac{m f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)} \tag{Eq1}
\end{equation*}
$$

(i) By writting the right hand side of Eq1 as $g\left(x_{i}\right)$, show that, if $x_{i}=X+\varepsilon_{i}$, where X is the root of $f(x)=0$ and ε_{i} is the error in the ith iterate generated by Eq1, then

$$
\varepsilon_{i+1}=g^{\prime}(X) \varepsilon_{i}+g^{\prime \prime}(X) \frac{\varepsilon_{i}^{2}}{2}+O\left(\varepsilon_{i}^{3}\right)
$$

(ii) Show that

$$
g^{\prime}(X)=1-m+\frac{m f(X) f^{\prime \prime}(X)}{\left[f^{\prime}(X)\right]^{2}}
$$

(iii) For functions of the form $f(X)=(x-X)^{m} h(x)$, show that $g^{\prime}(X)=0$, and clearly state what this proves.
(b) The function $f(x)=49 x^{3}+105 x^{2}-117 x+27=0$ has a root of mutiplicity 2 close to $x=1$. Use Eq1 to find this root.
4. Crout's method to solve the matrix equation $[A]\{X\}=\{b\}$, requires that the matrix of coefficients $[A]$ is expressed as the product of the lower triangular matrix $[L]$ and the upper triangular matrix $[U]$ given by

$$
\left[\begin{array}{ccc}
l_{11} & 0 & 0 \\
l_{21} & l_{22} & 0 \\
l_{31} & l_{32} & l_{33}
\end{array}\right]\left[\begin{array}{ccc}
1 & u_{12} & u_{13} \\
0 & 1 & u_{23} \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

(a) Use Crout's method to solve the following system of equations:

$$
\begin{aligned}
x_{1}-3 x_{2}+3 x_{3} & =-2 \\
2 x_{1}+5 x_{2}-x_{3} & =30 \\
4 x_{1}+2 x_{2}+3 x_{3} & =35
\end{aligned}
$$

(b) The value of the definite integral

$$
I=\int_{x_{0}}^{x_{1}} f(x) d x
$$

may be approximated by using the Trapezium Rule given by

$$
I \approx \frac{h}{2}\left(f\left(x_{0}\right)+f\left(x_{1}\right)\right), h=x_{1}-x_{0}
$$

Show that the error in a single application of the Trapezium rule is given by

$$
-\frac{h^{3}}{12} f^{\prime \prime}(\xi), \quad x_{0} \leqslant \xi \leqslant x_{1}
$$

END OF QUESTIONS

