UNIVERSITY OF BOLTON

SCHOOL OF ENGINEERING

MSC SYSTEMS ENGINEERING AND ENGINEERING MANAGEMENT

SEMESTER TWO EXAMINATION 2018/2019

MONITORING OF MECHANICAL SYSTEMS

MODULE NO: EEM7018

Date: Thursday 23rd May 2019

Time: 14:00 - 16:00

INSTRUCTIONS TO CANDIDATES:

There are <u>SIX</u> questions.

Answer <u>ANY THREE</u> questions.

All questions carry equal marks.

Marks for parts of questions are shown in brackets.

All working must be shown. A numerical solution to a question obtained by programming an electronic calculator will not be accepted.

The typical properties of piezo film is given at the end of the paper in Table 1.

Page 2 of 10

School of Engineering MSc Systems Engineering and Engineering Management Semester Two Examination 2018/2019 Monitoring of Mechanical Systems Module No. EEM7018

- Q1. (a) Critically discuss the strategic importance of maintenance for an organisation. (7 marks)
 - (b) Identify three commonly used traditional maintenance policies in the mechanical systems and justify their applications. (6 marks)
 - (c) Explain the techniques and main features of Machine Condition Monitoring (MCM), Identify with the aid of block diagrams the basic elements of a modern Machine Condition Monitoring (MCM) system, and Provide an example for using MCM technology in industry.

(12 marks)

Total 25 marks

- Q2. (a) Explain the basic elements involved in a vibration diagnosis system. (4 marks)
 - (b) Figure Q2(b) shows a CNC machine centre.
 - (i) Identify and briefly explain 4 vibration sources on the CNC machine centre. (4 marks)
 - (ii) Discuss the possible effects caused by vibrations on CNC machine centre. (5 marks)
 - (iii) For each vibration source identified from (i) above, suggest possible vibration measurement techniques, which should include the sensor/transducer systems selection, signal processing, and data analysis.

(12 marks)

Question 2 continued over the page......

Page 3 of 10

School of Engineering MSc Systems Engineering and Engineering Management Semester Two Examination 2018/2019 Monitoring of Mechanical Systems Module No. EEM7018

Question 2 continued....

Total 25 marks

School of Engineering MSc Systems Engineering and Engineering Management Semester Two Examination 2018/2019 Monitoring of Mechanical Systems Module No. EEM7018

Q3.

- (a) Describe the operation of a MEMS accelerometer. (6 marks)
- (b) Draw the equivalent circuit of a piezo film sensor as a voltage source. Describe the electrical properties of the model. (6 marks)
- (c) A 2.35 psi load is applied to a PVDF piezo film switch of 2.75 cm length, 3.25 cm width and 225 μm in film thickness. The switch element is rigidly backed, so the force acts to compress the film's thickness. Therefore, the piezo film works at g₃₃ mode.

Please calculate the voltage developed across the piezo film. The typical properties of the piezo film are given in Table 3 at the back of this paper, and the conversion factor from psi to N/m^2 is approximately 7,000.

(5 marks)

(d) Operational amplifiers are commonly used to amplify the weak signals collected from the sensors. Non-inverting amplifier & inverting amplifier are the two most common amplifier circuits. Draw the circuits for both types of operational amplifiers and design the Op-amp circuits with the amplification of 50 and -50, respectively. (8 marks)

Total 25 marks

Q4.

(a) What unexpected side effect will cause when an analogue signal is not sampled at an appropriate rate?

(2 marks)

- (b) Please calculating the apparent frequencies (f_a) of the following analog signals with the given sample rates and determine the minimum appropriate sampling frequencies to avoid the side effect.
 - (i) $y(t) = 5\cos(1700\pi t + 20)$, sample rate Fs = 1000 Hz (4 marks)
 - (ii) $y(t) = 20sin (630\pi t-3)$, sample rate Fs= 400Hz (4 marks)
- (c) What is Fourier transform commonly used for in the signal processing area? Please give an example of the application of the Fourier transform in the mechanical system monitoring field. (4 marks)

Question 4 continued over the page....

Page 5 of 10

School of Engineering MSc Systems Engineering and Engineering Management Semester Two Examination 2018/2019 Monitoring of Mechanical Systems Module No. EEM7018

Question 4 continued....

(d) A digital filter has the following difference equation:

$$y_n = 0.7x_n - 0.3x_{n-1} + 0.1y_{n-1} - 0.4y_{n-2}$$

- (i) State whether the given filter is a recursive or non-recursive filter and explain the difference between them. (4 marks)
- (ii) What is the order of the given filter? Why? (2 marks)
- (iii) The following sequence of input values is applied to the filter: $x_0=4$, $x_1=8$, $x_2=2$, $x_3=11$, $x_4=3$, $x_5=1$. Determine the output sequence for the filter from y1 to y3.

(5 marks)

Total 25 marks

Q5. A block diagram for an analogue control system is shown in Figure Q5 below:

Figure Q5

Where the digital controller is Kp,

and the zero-order hold $G(s) = \frac{1 - e^{-sT}}{s}$,

with the plant G_{A} $\Rightarrow = \frac{0.5}{s+0.5}$

(a) Determine the closed - loop digital z transfer function for the system. (10 marks)

- (b) If the gain of the digital controller Kp = 10, determine the range of the sampling interval T that will make the closed loop stable. **(7 marks)**
- (c) If the sampling frequency f = 20Hz, determine the range of the controller gain Kp which will make the closed loop stable. **(8 marks)**

Total 25 marks

Page 6 of 10 School of Engineering MSc Systems Engineering and Engineering Management Semester Two Examination 2018/2019 Monitoring of Mechanical Systems Module No. EEM7018

Q6 (a) When describing an OP-Amp, what is meant by the terms of:

Common - mode rejection ratio, and

Slew rate and transition frequency.

(6 marks)

(b) For the circuit shown in **Figure Q6** calculate the output voltage.

(c) A low-pass active filter is shown in **Figure Q7**, derive the transfer function, calculate the closed loop gain, and corner frequency.

Total 25 marks

END OF QUESTIONS

Formula sheets over the page.... PLEASE TURN THE PAGE....

Page 7 of 10

School of Engineering MSc Systems Engineering and Engineering Management Semester Two Examination 2018/2019 Monitoring of Mechanical Systems Module No. EEM7018

Table 1 of Basic Laplace and Z transforms

Time f (t)	Laplace F(s)	Z transforms
1. <i>δ</i> [<i>t</i>]	1	1
2. <i>u</i> () <i>t</i>	$\frac{1}{s}$	$\frac{z}{z-1}$
3. <i>t</i>	$\frac{1}{s^2}$	$\left(\frac{Tz}{(z+1)^2}\right)$
4. e^{-at}	$\frac{1}{s+a}$	$\frac{Z}{Z-e^{-aT}}$
5. $\frac{1}{a - e^{-a + b}}$	$\frac{1}{\frac{1}{\frac{1}{5}}}$	$\frac{\cancel{1}}{\cancel{1}} - \cancel{1} $
6. sin <i>@t</i>	$\frac{\omega}{s^2+\omega^2}$	$\frac{z\sin\omega T}{z^2 - 2z\cos\omega T + 1}$
7. cos <i>∞t</i>	$\frac{s}{s^2 + \omega^2}$	$\frac{z^2 - z\cos\omega T}{z^2 - 2z\cos\omega T + 1}$
8. $e^{-at} \sin \omega t$	$\frac{\omega}{\left(\mathbf{s}+\mathbf{\dot{a}}^{2}+\omega^{2}\right)}$	$\frac{ze^{-aT}\sin\omega T}{z^2 - 2ze^{-aT}\cos\omega T + e^{-2aT}}$
9. $e^{-at} \cos \omega t$	$\frac{S+a}{\left(S+a\right)^2+\omega^2}$	$\frac{\cancel{z} \ z - e^{-a \overleftarrow{c}} \cos \ \omega \overleftarrow{J}}{z^2 - 2z e^{-a \overleftarrow{c}} \cos \ \omega T + e^{-2a \overleftarrow{c}}}$
10. sinh <i>ωt</i>	$\frac{\omega}{\boldsymbol{s}^2 - \omega^2}$	$\frac{z \sinh \omega T}{z^2 - 2z \cosh \omega T + 1}$
11. cosh <i>ωt</i>	$\frac{s}{s^2-\omega^2}$	$\frac{\cancel{z} c \cosh \omega \cancel{y}}{z^2 - 2z \cosh \omega T + 1}$

Page 8 of 10

School of Engineering MSc Systems Engineering and Engineering Management Semester Two Examination 2018/2019 Monitoring of Mechanical Systems Module No. EEM7018

Table 2 of Basic Sampled data and Z Transforms

signal x[n]	z TransformX(z)	Region of Convergence
1 δ[<i>n</i>]	1	all z
2 <i>u</i> [<i>n</i>]	$\frac{z}{z-1}$	<i>z</i> > 1
3 β ⁿ u[n]	$\frac{Z}{Z-\beta}$	$ z > \beta $
4 nu[n]	$\frac{z}{\left(z-1\right)^2}$	<i>z</i> > 1
5 $\cos(n\Omega)u[n]$	$\frac{z^2 - z\cos\Omega}{z^2 - 2z\cos\Omega + 1}$	<i>z</i> > 1
6. $\sin(n\Omega)u[n]$	$\frac{z\sin\Omega}{z^2-2z\cos\Omega+1}$	<i>z</i> > 1
7 $\beta^n \cos(n\Omega) u[n]$	$\frac{z^2 - \beta z \cos \Omega}{z^2 - 2\beta z \cos \Omega + \beta^2}$	$ z > \beta $
8 β ⁿ sin(<i>n</i> .))į ų n	$\frac{\beta z \sin \Omega}{z^2 - 2\beta z \cos \Omega + \beta^2}$	$ z > \beta $
S		PLEASE TURN THE PAGE

Page 9 of 10

School of Engineering MSc Systems Engineering and Engineering Management Semester Two Examination 2018/2019 Monitoring of Mechanical Systems Module No. EEM7018

ok)

Symbol	l Parameter		Parameter PVDF Copolymer	Copolymer	Units	
t	Thickness		9, 28, 52, 110	<1 to 1200	μm (micron, 10 ⁻⁶)	
d ₃₁			23	11	¹⁰⁻¹² m/m c/m ²	
d ₃₃	Piezo Strain	Constant	-33	-38	$\frac{V/m}{V/m} \frac{\partial r}{N/m^2}$	
g ₃₁	Piezo Stress constant		216	162	10^{-3} V/m or m/m	
g33			-330	-542	N/m^2 C/m^2	\mathbf{D}
k31	Electromechanical Coupling Factor		12%	20%		
k,			14%	25-29%		
С	Capacitance		380 for 28µm	68 for 100µm	pF/cm ^{2,} @ 1KHz	
Y	Young's Mo	dulus	2-4	3-5	$10^9 \mathrm{N/m^2}$	
V	Speed of	stretch:	1.5	2.3		
v _o	Sound	thickness:	2.2	2.4	10 ³ m/s	
р	Pyroelectric Coefficient		30	40	10 ⁻⁶ C/m ² °K	
8	Permittivity		106-113	65-75	10 ⁻¹² F/m	
ε/ε ₀	Relative Per	mittivity	12-13	7-8		
ρ _m	Mass Density		1.78	1.82	10³kg/m	
ρ _e	Volume Resistivity		>1013	>1014	Ohm meters	
R_{\Box}	Surface Metallization Resistivity		<3.0	<3.0	Ohms/square for NiAl	
R_{\Box}			0.1	0.1	Ohms/square for Ag Ink	
tan δ _e	Loss Tangent		0.02	0.015	@ 1KHz	
	Yield Strength		45-55	20-30	10 ⁶ N/m ² (stretch axis)	
	Temperature	e Range	-40 to 80100	-40 to 115145	°C	
	Water Absorption Maximum Operating Voltage		< 0.02	< 0.02	% H ₂ O	
			750 (30)	750 (30)	V/mil(V/µm), DC, @ 25°C	
	Breakdown Voltage		2000 (80)	2000 (80)	V/mil(V/µm), DC, @ 25°C	

Table 3. Typical properties of piezo film

Page 10 of 10

School of Engineering MSc Systems Engineering and Engineering Management Semester Two Examination 2018/2019 Monitoring of Mechanical Systems Module No. EEM7018

$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$	$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$	
$\cos(\alpha + \beta) = \cos\alpha \cos\beta - \sin\alpha \sin\beta$ $\cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$	$\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$	
$\sin \alpha + \sin \beta = 2 \sin \left(\frac{\alpha + \beta}{2}\right) \cos \left(\frac{\alpha - \beta}{2}\right)$	$\cos \alpha + \cos \beta = 2 \cos \left(\frac{\alpha + \beta}{2} \right) \cos \left(\frac{\alpha - \beta}{2} \right)$	
$\sin \alpha - \sin \beta = 2 \cos \left(\frac{\alpha + \beta}{2} \right) \sin \left(\frac{\alpha - \beta}{2} \right)$	$\cos \alpha - \cos \beta = -2 \sin \left(\frac{\alpha + \beta}{2} \right) \sin \left(\frac{\alpha - \beta}{2} \right)$	
$\sin\alpha\sin\beta = \frac{1}{2}[\cos(\alpha-\beta) - \cos(\alpha+\beta)]$	$\sin\alpha\cos\beta = \frac{1}{2}[\sin(\alpha+\beta) + \sin(\alpha-\beta)]$	
$\cos\alpha\cos\beta = \frac{1}{2}\left[\cos(\alpha - \beta) + \cos(\alpha + \beta)\right]$	$\cos \alpha \sin \beta = \frac{1}{2} [\sin(\alpha + \beta) - \sin(\alpha - \beta)]$	
$\sin(2\alpha) = 2\sin\alpha\cos\alpha = \frac{2\tan\alpha}{1+\tan^2\alpha}$	$\sin\left(\frac{\alpha}{2}\right) = \pm \sqrt{\frac{1 - \cos\alpha}{2}}$	
$\cos(2\alpha) = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1$	$\cos\left(\frac{\alpha}{\alpha}\right) = \pm \frac{1 + \cos \alpha}{\alpha}$	
$= 1 - 2\sin^2 \alpha = \frac{1 - \tan^2 \alpha}{1 + \tan^2 \alpha}$	(2) $\sqrt{2}$ (α) $1 - \cos \alpha$ $\sin \alpha$ $(1 - \cos \alpha)$	
$\tan(2\alpha) = \frac{2\tan\alpha}{1-\tan^2\alpha}$	$\tan\left(\frac{1}{2}\right) = \frac{1}{\sin\alpha} = \frac{1}{1 + \cos\alpha} = \pm \sqrt{\frac{1}{1 + \cos\alpha}}$	
$\cot(2\alpha) = \frac{\cot^2 \alpha - 1}{2\cot \alpha}$	$\cot\left(\frac{\alpha}{2}\right) = \frac{1 + \cos\alpha}{\sin\alpha} = \frac{\sin\alpha}{1 - \cos\alpha} = \pm \sqrt{\frac{1 + \cos\alpha}{1 - \cos\alpha}}$	
$\sin^2\alpha + \cos^2\alpha = 1$	$\sin(3\alpha) = 3\sin\alpha - 4\sin^3\alpha$	
$\tan^2 \alpha + 1 = \sec^2 \alpha$ $1 + \cot^2 \alpha = \csc^2 \alpha$	$\cos(3\alpha) = 4\cos^2\alpha - 3\cos\alpha$ $\tan(3\alpha) = \frac{3\tan\alpha - \tan^3\alpha}{2}$	
	$1 - 3\tan^2 \alpha$	
$\sin(4\alpha) = 4\sin\alpha\cos\alpha(2\cos^2\alpha - 1)$	$\sin(5\alpha) = 5\sin\alpha - 20\sin^3\alpha + 16\sin^5\alpha$	
Ċ		
3		

Table 4 trigonometric equations

END OF PAPER