UNIVERSITY OF BOLTON

SCHOOL OF ENGINEERING

MSC SYSTEMS ENGINEERING AND ENGINEERING MANAGEMENT

SEMESTER TWO EXAMINATION 2018/2019

MICROPROCESSOR BASED SYSTEMS

MODULE NO: EEM7016

Date: Wednesday 22nd May 2019

Time: 10:00 – 12:00

INSTRUCTIONS TO CANDIDATES:

There are <u>SIX</u> questions.

Answer <u>FOUR</u> questions out of six.

All questions carry equal marks.

Marks for parts of questions are shown in brackets.

This examination paper carries a total of 100 marks.

All working must be shown. A numerical solution to a question obtained by programming an electronic calculator will not be accepted.

Extracts from the PIC18F452 data sheet is provided at the back of the paper containing Figures 1 through to 7.

Question 1

- a) Provide the definition of data memory and specify the number of write operations that most flash devices are capable of performing. (6 marks)
- b) Convert the following 8-bits binary digits, 1101 1001, to a hexadecimal number. (4 marks)
- c) Provide the definition of the term "a byte".

(4 marks)

d) Depict with a diagram showing the Harvard architecture, and list the advantages and disadvantages of this architecture. (11 marks)

Total 25 marks

Question 2

ii.

- a) Define what the term "Instruction Set" implies and state the two categories related to this term. (7 marks)
- b) Illustrate with the aid of a diagram the Instruction Cycle Flow Chart.

(11 marks)

- c)
- i. Explain what the term instruction register is with reference to a microprocessor based system. (5 marks)

The program counter in a PIC18 is made up of how many bits?

(2 marks)

Total 25 marks

Question 3

- a) What does the term UART implies and list the communication standards that are usually related to UART. (5 marks)
- b) Explain what I²C is and what is it usually used for. (8 marks)
- c) Illustrate with the aid of a diagram a reset circuit for a PIC18F452 and provide explanation of the role of the components in the circuit. (12 marks)

Total 25 marks

Question 4

- a) Show the syntax of a do-while loop. Write a code to illustrate a forever loop within the main function and illustrate an example of a forever loop. (9 marks)
- b) With the aid of state machines design techniques, design a state diagram showing a simple automated train ticket machine. Take into consideration the following requirements:
 - Only 1 person can buy a train journey ticket each time.
 - Each journey cost £5.00 and exact change is not needed.
 - Accepts only the following currencies:
 - Coins: £1, £2
 - Note: £5 and £10.
 - Refund of money from the machine is possible at any time.

(16 marks)

Total 25 marks

Question 5

An embedded system uses a PIC microcontroller to interface to three buttons and three LEDS. The components connects to the following PIC microcontroller pins:

Button 1	PORTD 4
Button 2	PORTD 5
Button 3	PORTD 6
LED 1	PORTD 1
LED 2	PORTD 2
LED 3	PORTD 3

The buttons and LEDs are connected as active high mode to the microcontroller. The LEDs require a forward current of 22mA, and have a forward voltage of 2.1V. The microcontroller is supplied by a 5V voltage.

Based on the above information, determine the following:

- a) Draw the circuit diagram required for this design. (6 marks)
- b) Determine the values of any components that are required for the design.

(5 marks)

c) Write a 'C' function code showing how to initialise the system.

(4 marks)

- d) Write a 'C' code to show that when:
 - Button 1 is pressed, LED 1 is ON and LED 2 and LED 3 is OFF.
 - Button 2 is pressed, LED 2 is ON and LED 1 and LED 3 is OFF.
 - Button 3 is pressed, LED 3 is ON and LED 1 and LED 2 is OFF.

(10 marks)

Total 25 marks

Page 5 of 11

School of Engineering MSc Systems Engineering and Engineering Management Semester Two Examination 2018/2019 Microprocessor Based Systems Module No. EEM7016

Question 6

- a) What are the benefits of using interrupts in programming? (6 marks)
- b) In an automation process, a precise timed interrupt of 1 second is required, which uses a PIC18F452. To drive the microcontroller, the clock oscillator frequency (Fosc) employed is 16 MHz. Elaborate how the TMR0 module will be configured to generate this 1 second interrupt, this includes:
 - i. Showing the configuration of the Timer0 control register (T0CON) and the Interrupt Control register (INTCON). (12 marks)
 - ii. Stating the pre-loaded value for the counter register. (2 marks)
 - iii. Code showing how to clear the TMR0IF (TMR0 overflow interrupt flag) bit. (5 marks)

Total 25 marks

END OF QUESTIONS

Data Sheet Information for the PIC18F452 Microcontroller over the page....

Page 6 of 11

School of Engineering MSc Systems Engineering and Engineering Management Semester Two Examination 2018/2019 Microprocessor Based Systems Module No. EEM7016

Data Sheet Information for the PIC18F452 Microcontroller

Page 7 of 11

School of Engineering MSc Systems Engineering and Engineering Management Semester Two Examination 2018/2019 Microprocessor Based Systems Module No. EEM7016

T0CON: TIMER0 CONTROL REGISTER

P P

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1						
TMR0ON	T08BIT	TOCS	TOSE	PSA	T0PS2	T0PS1	T0PS0						
bit 7	•						bit 0						
bit 7	TMR0ON: Timer0 On/Off Control bit												
	1 = Enables Timer0 0 = Stops Timer0												
bit 6	T08BIT: Timer0 8-bit/16-bit Control bit												
	 1 = Timer0 is configured as an 8-bit timer/counter 0 = Timer0 is configured as a 16-bit timer/counter 												
bit 5	TOCS: Time	r0 Clock So	urce Select	bit									
	1 = Transiti o = Internal	1 = Transition on T0CKI pin o = Internal instruction cycle clock (CLKO)											
bit 4	TOSE: Time	r0 Source E	dge Select	bit									
	 1 = Increment on high-to-low transition on TOCKI pin 0 = Increment on low-to-high transition on TOCKI pin 												
bit 3	PSA: Timer	0 Prescaler	Assignment	t bit									
	 1 = TImer0 prescaler is NOT assigned. Timer0 clock input bypasses prescaler. o = Timer0 prescaler is assigned. Timer0 clock input comes from prescaler output. 												
bit 2-0	TOPS2:TOP	SO: Timer0	Prescaler S	elect bits									
	111 = 1:256	6 prescale v	alue										
	110 = 1:128	B prescale v	alue										
	101 = 1:64	prescale va	ue										
	100 = 1.32	prescale val	lue										
	011 - 1.10 010 = 1.8	prescale val	lue										
	001 = 1:4	prescale val	lue										
	000 = 1:2	prescale va	lue										

Figure 2: Timer0 Control Register

Page 8 of 11

School of Engineering MSc Systems Engineering and Engineering Management Semester Two Examination 2018/2019 Microprocessor Based Systems Module No. EEM7016

INTCON REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x					
GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INTOIF	RBIF					
bit 7							bit 0					
bit 7	GIE/GIEH: Glo	bal Interrup	t Enable bi	it								
	When IPEN =	0:										
1 = Enables all unmasked interrupts 0 = Disables all interrupts												
0 = Disables all interrupts When IPEN = 1												
<u>when IPEN = 1:</u> 1 = Enables all high priority interrupts												
 c) = Disables all interrupts o) = Disables all interrupts 												
bit 6 PEIE/GIEL: Peripheral Interrupt Enable bit												
	When IPEN =	<u>0:</u>										
	1 = Enables all	unmasked	peripheral	interrupts								
	o = Disables al	ll peripheral	interrupts									
	<u>when IPEN = :</u> 1 = Enables all	<u>1:</u> Llow priority	nerinheral	interrunts								
	o = Disables al	I low priority	periphera	i interrupts								
bit 5	TMROIE: TMR	0 Overflow	Interrupt Ei	nable bit								
	1 = Enables th	e TMR0 ove	erflow inter	rupt								
	o = Disables th	ie TMR0 ov	erflow inter	rrupt								
bit 4	INTOIE: INTO E	External Inte	errupt Enab	ole bit								
	1 = Enables the	e INTO exte	rnal interru	ipt unt								
hit 0	0 - Disables III	Change Int	orrupt Epo	upi bla bit								
DIL 3	1 = Enables th	e PB port cl	errupi Eria hange inter	nunt								
	o = Disables th	ie RB port d	hange inte	rrupt								
bit 2	TMROIF: TMR	0 Overflow I	Interrupt Fl	ag bit								
	1 = TMR0 regis	ster has ove	erflowed (m	nust be clea	red in softw	are)						
	o = TMR0 regis	ster did not	overflow									
bit 1	INTOIF: INTO E	External Inte	rrupt Flag	bit								
	1 = The INTO e	external inte	rrupt occur	rred (must b	e cleared ir	i software)						
h:10	o = The INTU e	Obernal Inte	rrupt ala na									
DILU	1 = At least on	Change Int	errupt Flag 7:DB4 pipe	changed d	ato (must b	o cloarod in	coffwara)					
	0 = None of the	e RB7:RB4	pins have (changed sta	ate (musi b ite	e cleared in	soltware)					
	· · ·			j								
	Fie	aure 3: I	nterrup	t Contro	l reaiste	er (INTC	ON)					
			- P			(/					
$\langle \rangle$												

Page 10 of 11

School of Engineering MSc Systems Engineering and Engineering Management Semester Two Examination 2018/2019 Microprocessor Based Systems Module No. EEM7016

bit 7	I	I	I	I	!		bit 0
ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0

bit 7-6 ADCS1: ADCS0: A/D Conversion Clock Select bits (ADCON0 bits in bold)

ADCON1 <adcs2></adcs2>	ADCON0 <adcs1:adcs0></adcs1:adcs0>	Clock Conversion
0	00	Fosc/2
0	01	Fosc/8
0	10	Fosc/32
0	11	FRC (clock derived from the internal A/D RC oscillator)
1	00	Fosc/4
1	01	Fosc/16
1	10	Fosc/64
1	11	FRC (clock derived from the internal A/D RC oscillator)

bit 5-3 CHS2:CHS0: Analog Channel Select bits

- 000 =channel 0, (AN0)
- 001 =channel 1, (AN1)
- 010 =channel 2, (AN2)
- 011 =channel 3, (AN3)
- 100 =channel 4, (AN4)
- 101 = channel 5, (AN5) 110 = channel 6, (AN6)
- 111 = channel 7, (AN7)

Note: The PIC18F2X2 devices do not implement the full 8 A/D channels; the unimplemented selections are reserved. Do not select any unimplemented channel.

bit 2 GO/DONE: A/D Conversion Status bit

When ADON = 1:

- 1 = A/D conversion in progress (setting this bit starts the A/D conversion which is automatically cleared by hardware when the A/D conversion is complete)
- 0 = A/D conversion not in progress
- bit 1 Unimplemented: Read as '0'

bit 0 ADON: A/D On bit

- 1 = A/D converter module is powered up
- 0 = A/D converter module is shut-off and consumes no operating current

Figure 6: ADCON0 Register

Page 11 of 11

School of Engineering MSc Systems Engineering and Engineering Management Semester Two Examination 2018/2019 Microprocessor Based Systems Module No. EEM7016

bit 7							bit 0
ADFM	ADCS2	—	—	PCFG3	PCFG2	PCFG1	PCFG0
R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0

bit 7 ADFM: A/D Result Format Select bit

1 = Right justified. Six (6) Most Significant bits of ADRESH are read as '0'.
 0 = Left justified. Six (6) Least Significant bits of ADRESL are read as '0'.

bit 6 ADCS2: A/D Conversion Clock Select bit (ADCON1 bits in bold)

ADCON1 <adcs2></adcs2>	ADCON0 <adcs1:adcs0></adcs1:adcs0>	Clock Conversion
0	00	Fosc/2
0	01	Fosc/8
0	10	Fosc/32
0	11	FRC (clock derived from the internal A/D RC oscillator)
1	00	Fosc/4
1	01	Fosc/16
1	10	Fosc/64
1	11	FRC (clock derived from the internal A/D RC oscillator)

bit 5-4 Unimplemented: Read as '0'

bit 3-0 PCFG3:PCFG0: A/D Port Configuration Control bits

PCFG <3:0>	AN7	AN6	AN5	AN4	AN3	AN2	AN1	AN0	VREF+	VREF-	C/R
0000	Α	Α	Α	Α	Α	Α	Α	Α	VDD	Vss	8/0
0001	Α	Α	Α	Α	VREF+	Α	Α	Α	AN3	Vss	7/1
0010	D	D	D	Α	Α	Α	Α	Α	VDD	Vss	5/0
0011	D	D	D	Α	VREF+	Α	Α	Α	AN3	Vss	4/1
0100	D	D	D	D	Α	D	Α	Α	VDD	Vss	3/0
0101	D	D	D	D	VREF+	D	Α	Α	AN3	Vss	2/1
011x	D	D	D	D	D	D	D	D	-	_	0/0
1000	Α	Α	Α	Α	VREF+	VREF-	Α	Α	AN3	AN2	6/2
1001	D	D	Α	Α	Α	Α	Α	Α	VDD	Vss	6/0
1010	D	D	Α	Α	VREF+	Α	Α	Α	AN3	Vss	5/1
1011	D	D	Α	Α	VREF+	VREF-	Α	Α	AN3	AN2	4/2
1100	D	D	D	Α	VREF+	VREF-	Α	Α	AN3	AN2	3/2
1101	D	D	D	D	VREF+	VREF-	Α	Α	AN3	AN2	2/2
1110	D	D	D	D	D	D	D	Α	VDD	Vss	1/0
1111	D	D	D	D	VREF+	VREF-	D	Α	AN3	AN2	1/2

A = Analog input D = Digital I/O

C/R = # of analog input channels / # of A/D voltage references

Figure 7: ADCON1 Register