UNIVERSITY OF BOLTON

SCHOOL OF ENGINEERING

BENG (HONS) ELECTRICAL \& ELECTRONICS ENGINEERING

SEMESTER TWO EXAMINATION 2018/2019

ANALOGUE SIGNAL PROCESSING \& COMMUNICATIONS

MODULE NO: EEE5015

Date: Friday 24 ${ }^{\text {th }}$ May 2019
Time: 2:00pm - 4:30pm

INSTRUCTIONS TO CANDIDATES:
There are SIX questions
Answer ANY FOUR questions.
All questions carry equal marks.

Marks for parts of questions are shown in brackets.

Electronic calculators may be used provided that data and program storage memory is cleared prior to the examination.

CANDIDATES REQUIRE:
Formula Sheet (attached).

School of Engineering
BEng (Hons) Electrical and Electronic Engineering
Semester 2 Examination 2018/19
Analogue Signal Processing \& Communications
Module No. EEE5015

Question 1.

(a) Using one single equation, define the characteristics of a linear system.
(b) Estimate the period of signal $g(t)$ given by

$$
g(t)=10 \sin (12 \pi t)+4 \cos (18 \pi t)
$$

(c) Considering the signal shown below in Fig.Q1.1, calculate and draw the value of a new signal described by $\times(2(t-1))$.

Fig. Q1.1: A signal plot
(d) Determine if the system described by the equation $y(n)=x(n) \cos (2 \pi n)$ is
(i) linear,
(ii) time invariant.

School of Engineering
BEng (Hons) Electrical and Electronic Engineering
Semester 2 Examination 2018/19
Analogue Signal Processing \& Communications
Module No. EEE5015

Question 2

(a) Given $\mathrm{x}(\mathrm{t})=\mathrm{u}(\mathrm{t})-\mathrm{u}(\mathrm{t}-3)$ and $\mathrm{h}(\mathrm{t})=\mathrm{u}(\mathrm{t})-\mathrm{u}(\mathrm{t}-2)$,
(i) Draw the two signals,
[5 marks]
(ii) Evaluate the convolution $y(t)=x(t) * h(t)$ either by analytical or graphical method.

Hint: $\mathrm{y}(\mathrm{t})=\mathrm{x}(\mathrm{t})^{*} \mathrm{~h}(\mathrm{t})=\int_{0}^{t} x(\tau) h(t-\tau) d \tau$
[10 marks]
(b) Find the signal power of $x(t)=A \cos (2 \pi f t+\theta)$, where f is the frequency of the signal and θ is the phase shift.

Hints: The average power Px is given by

$$
\begin{aligned}
P x & =\lim _{T \rightarrow \infty} \frac{1}{T} \int_{-T}^{T}|x(t)|^{2} d t \\
\cos (x) \cos (y) & =\frac{1}{2}[\cos (x-y)+\cos (x+y)]
\end{aligned}
$$

School of Engineering
BEng (Hons) Electrical and Electronic Engineering
Semester 2 Examination 2018/19
Analogue Signal Processing \& Communications
Module No. EEE5015

Question 3

(a) An active first order, low-pass filter can be constructed using a combination of op-amp, resistors and capacitors as shown in Fig.Q3.1. For this circuit:
(i) Derive the equations for transfer function and cutofffrequency, fo
[10 marks]
(ii) Now, design a first-order low-pass filter to give a high cutoff frequency of $f_{0}=1 \mathrm{kHz}$ with a pass-band gain of 4 . What is the expected roll-off rate for such filters? Choose $C \leq 1 \mu F$.
[5 marks]
(iii) For the filter constructed in part (ii) above, if the desired frequency is now changed to $f_{n}=1.5 \mathrm{kHz}$, calculate the new value of Rn .
[3 marks]

Fig.Q3.1: An operational amplifier circuit Q3 continues over the page...

PLEASE TURN THE PAGE.....

School of Engineering
BEng (Hons) Electrical and Electronic Engineering
Semester 2 Examination 2018/19
Analogue Signal Processing \& Communications
Module No. EEE5015
Q3 continued...
(b) A generic Sallen-Key filter topology can be depicted by circuit shown in Fig.Q3.2.
(i) For this circuit assuming the op-amp to be an ideal one, determine the critical frequency of the filter shown in Fig Q3.2 with values of $R=10 \mathrm{k} \Omega, C=0.2 \mu \mathrm{~F}$ and $\mathrm{R} 2=1 \mathrm{k} \Omega$.
[4 marks]
(ii) What should be the value of R1 for an approximate

Butterworth response? What is the expected roll-off rate for such a filter?

Fig.Q3.2: A Generic Sallen-Key filter

Total 25 marks

School of Engineering
BEng (Hons) Electrical and Electronic Engineering
Semester 2 Examination 2018/19
Analogue Signal Processing \& Communications
Module No. EEE5015

Question 4:

a) A Linear Time Invariant (LTI) system is specified by the following equation

$$
\left(D^{2}+4 D+4\right) y(t)=D f(t)
$$

(i) Find the characteristic polynomial, characteristic equation, characteristic roots and characteristic modes of this system.
(ii) Find $y_{0}(t)$, the zero-input component of the response $y(t)$ for $t \geq 0$, subject to the initial conditions $y(0)=3$ and $y^{\prime}(0)=-4$.
[5 marks]
b) Find out the unit impulse response of the system specified by the following equation, subject to initial conditions $y(0)=0$ and $y^{`}(0)=1$:

$$
\frac{d^{2} y}{d t^{2}}+4 \frac{d y}{d t}+3 y(t)=\frac{d x}{d t}+5 x(t)
$$

[10 marks]

School of Engineering
BEng (Hons) Electrical and Electronic Engineering
Semester 2 Examination 2018/19
Analogue Signal Processing \& Communications
Module No. EEE5015

Q4 continued...

c) The circuit shown below (Fig.Q4c) has a centre frequency of $1 \mathrm{rad} / \mathrm{s}$, bandwidth of $1 \mathrm{rad} / \mathrm{s}$ and a Q value of 1 . Using scaling laws, compute the values of R and L that yield a circuit with the same Q factor but with a centre frequency of 5 kHz . Assume that a scaled capacitance value of $120 \mu \mathrm{~F}$ is being used in the revised circuit.

C

Fig.Q4c: A RLC circuit

School of Engineering
BEng (Hons) Electrical and Electronic Engineering
Semester 2 Examination 2018/19
Analogue Signal Processing \& Communications
Module No. EEE5015

Question 5.

a) Consider the system shown in Fig.Q5.1 with the values of transfer functions being $H_{1}(s)=\frac{s}{(s+1)(s+a)}$ and $H_{2}(s)=\frac{b}{s}$

Fig.Q5.1: A close loop block diagram
(i) Determine the values of a and b such that the overall transfer function is given by:

$$
H(s)=\frac{s}{(s+4)(s+5)}
$$

(ii) Determine the output $y(t)$ of the system with the above transfer function to the unit step input $x(t)=u(t)$
b) A signal has a bandwidth of 10 MHz . This signal is sampled and quantized with an analogue-to-digital converter (ADC).
(i) Determine the sampling rate if the signal is to be sampled at a rate 20% above the Nyquist rate.

School of Engineering
BEng (Hons) Electrical and Electronic Engineering
Semester 2 Examination 2018/19
Analogue Signal Processing \& Communications
Module No. EEE5015
(ii) If the samples are quantized into 1024 levels, determine the number of binary pulses required to encode each sample.
[2.5 marks]
Total 25 marks

Question 6:

(a) What is the role of an anti-aliasing filter? For a signal described by the equation $x(t)=3 \cos (100 \pi t)$, find out the minimum sampling rate required to avoid aliasing
(b) Describe the term multiplexing and illustrate two methods that can be used to achieve this.
[7 marks]
(c) Describe the term modulation and explain how it is useful for broadcasting of signals.
(d) Describe the three basic types of modulation.

END OF QUESTIONS

School of Engineering
BEng (Hons) Electrical and Electronic Engineering
Semester 2 Examination 2018/19
Analogue Signal Processing \& Communications
Module No. EEE5015

FORMULA SHEET

These equations are given to save short-term memorisation of details of derived equations and are given without any explanation or definition of symbols; the student is expected to know the meanings and usage.

$$
E_{f}=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|F(\omega)|^{2} d \omega
$$

Butterworth Response Table

ORDER	ROLL-OFF DB/DECADE	1ST STAGE			2ND STAGE			3RD STAGE		
		POLES	DF	R_{1} / R_{2}	POLES	DF	R_{3} / R_{4}	POLES	DF	R_{5} / R_{6}
1	-20	1	Optional							
2	-40	2	1.414	0.586						
3	-60	2	1.00	1	1	1.00	1			
4	-80	2	1.848	0.152	2	0.765	1.235			
5	-100	2	1.00	1	2	1.618	0.382	1	0.618	1.382
6	-120	2	1.932	0.068	2	1.414	0.586	2	0.518	1.482

Form of the natural response

Root of characteristic equation	Form of natural response
Real and distinct root, s_{k}	$\mathrm{C}_{\mathrm{k}} \exp (\mathrm{skt})$
Complex conjugate $\beta \pm j \omega$	$\left[\mathrm{C}_{1} \cos (\omega t)+\mathrm{C}_{2} \sin (\omega t)\right] \exp (\beta \mathrm{t})$
Real repeated root, (sk) ${ }^{\text {p }}$	$\left(\mathrm{K} 1+\mathrm{K}_{1} \mathrm{t}+\mathrm{K}_{2} \mathrm{t}^{2}+\ldots . .+\mathrm{K}_{\mathrm{p}} \mathrm{t}^{\mathrm{p}}\right) \exp (\mathrm{skt})$
Complex repeated roots $(\beta \pm j \omega)^{\text {p }}$	$\begin{gathered} \left(C_{0}+C_{1} t+C_{2} t^{2}+\ldots+C_{p t} t^{p}\right) \operatorname{cost}(\omega t) \exp (\beta t)+ \\ \left(D_{0}+D_{1} t+D_{2} t^{2}+\ldots \ldots+D_{p} t^{p}\right) \sin (\omega t) \exp (\beta t) \end{gathered}$

School of Engineering
BEng (Hons) Electrical and Electronic Engineering
Semester 2 Examination 2018/19
Analogue Signal Processing \& Communications
Module No. EEE5015
Form of the forced response

Forcing Function	Form of forced response
C (constant)	C_{1} (constant)
$\exp (-\alpha \mathrm{t}), \alpha \neq$ root of characteristic equation	Kexp(-at)
t	$\mathrm{K}_{0}+\mathrm{K}_{1} \mathrm{t}$
t^{p}	$\mathrm{K}_{0}+\mathrm{K}_{1} \mathrm{t}+\mathrm{K}_{2} \mathrm{t}^{2}+\ldots . .+\mathrm{K}_{\mathrm{p}} \mathrm{t}^{\mathrm{p}}$
texp(-at)	$\left(\mathrm{K}_{0}+\mathrm{K}_{1} \mathrm{t}\right) \exp (-\alpha \mathrm{t})$
$t^{p} \exp (-\alpha t)$	$\left(K_{0}+K_{1} t+K_{2} t^{2}+\ldots . .+K_{p} t^{p}\right) \exp (-\alpha t)$

END OF FORMULA SHEET

END OF PAPER

