SCHOOL OF ENGINEERING

BENG (HONS) ELECTRICAL AND ELECTRONIC

 ENGINEERING
SEMESTER 2 EXAMINATION 2018/2019

INTERMEDIATE DIGITAL ELECTRONICS AND COMMUNICATIONS

MODULE NO: EEE5012

Date: Wednesday 22 ${ }^{\text {nd }}$ May 2019 Time: 14:00-16:30

INSTRUCTIONS TO CANDIDATES: There are FIVE questions.
Answer ANY FOUR questions.
All questions carry equal marks.

Marks for parts of questions are shown in brackets.

School of Engineering
BEng(Hons) Electrical and Electronic Engineering
Semester 2 2018/2019
Intermediate Digital Electronics and Communications Module No. EEE5012

Question 1

a) Simplify the following Boolean Algebra;
(i) $\mathrm{F}=\Pi(1,5)$
(ii) $\mathrm{F}=1 \oplus(A B)$
(4 marks)
b) Implement the $\mathrm{F}=A B C+C \bar{D}$ using;
(i) NAND gates only
(ii) NOR gates only.
(6 marks)
c) By using five variable K -maps simplify;

$$
F=\sum(1,2,5,6,7,8,9,10,13,17,18,21,22,29)
$$

Question 2

a) A logic circuit is shown in Figure 1, simplify this circuit and show what single logic gate could replace this circuit.
(10 marks)
b) If the NAND gates shown, were replaced by NOR what logic function would the circuit become.
c) Simplify $\mathrm{f}=x \oplus \bar{x} y \oplus y$

Figure 1

PLEASE TURN THE PAGE.....

Question 3

a) Determine the output states for this S-R flip-flop, given the pulse inputs shown in Figure 2:
(5 marks)

R

c \square \square \square

Question 4

a) Describe how an Analogue to digital convertor can be constructed using a Digital to Analogue convertor.
b) Explain the operation of Successive Approximation ADC, comparing the speed and accuracy with the counter ramp.
c) Sketch a four bit R-2R ladder D-A and describe it's operation.
d) If an R-2R ladder D-A has all eight bits set to logic one and Vref is 5volts, calculate the value of R_{f} to give an output voltage of -9.96 volts.

Total 25 marks

Question 5

a) Describe the main differences between the following PLD devices, PROM, PLA,PAL and GAL, illustrate your answers with a suitable diagram. (8 marks)
b) By completing the first column for the seven segment code shown in Figure 4,(found on page 5) derive a simplified expression for segment 'a' using a k map and indicate on the PLD the fuse connections to generate the logic for segment 'a', use Figure 6. (found on page 6)
c) For the PLD device shown in Figure 5 (found on page 5) derive the Boolean algebra for the two functions given. Simplify the equations and state the function.
d) If the gates G1and G2 have pin 2 connected to the supply how would the output function change.

END OF QUESTIONS

PLEASE TURN THE PAGE FOR FIGURES 4, 5 AND 6...

School of Engineering
BEng(Hons) Electrical and Electronic Engineering
Semester 2 2018/2019
Intermediate Digital Electronics and Communications
Module No. EEE5012

(a) Seven segment display

	Swement ($\mathrm{ON}=1$)						
ABCD	4	b	c	d	e	1	E
0000		1	1	1	1	1	0
0001		1	1	0	0	0	0
0010		1	0	1	1	0	1
0011		1	1	1	0	0	1
0100		1	1	0	0	I	I
0101		0	I	I	0	I	I
0110		0	1	1	1	1	1
0111		1	1	0	0	0	0
1000		I	I	1	1	1	1
1001		I	1	0	0	1	I
1010		x	x	x	x	x	x
1011		\times	\%	\%	I	x	x
1100		$\underset{ }{8}$	*	-	*	π	x
1101		$\underline{1}$	X	x	-	X	*
1110		π	*	x	\%	X	x
1111		\times	*	x	x	x	x

(b) Partially completed truth table

Figure 4

Figure 5

PLEASE TURN THE PAGE....

School of Engineering
BEng(Hons) Electrical and Electronic Engineering
Semester 2 2018/2019
Intermediate Digital Electronics and Communications
Module No. EEE5012

Figure 6

