[ESS017]

UNIVERSITY OF BOLTON

SCHOOL OF ENGINEERING

BENG (HONS) ELECTRICAL AND ELECTRONIC ENGINEERING

SEMESTER 2 EXAMINATION 2018/2019

INTERMEDIATE DIGITAL ELECTRONICS AND COMMUNICATIONS

MODULE NO: EEE5012

Date: Wednesday 22nd May 2019 Time: 14:00 – 16:30

<u>INSTRUCTIONS TO CANDIDATES:</u> There are <u>FIVE</u> questions.

Answer **ANY FOUR** questions.

All questions carry equal

marks.

Marks for parts of questions are

shown in brackets.

Question 1

- a) Simplify the following Boolean Algebra;
 - (i) $F = \prod (1,5)$
 - (ii) $F=1\oplus (AB)$

(4 marks)

- b) Implement the $F = ABC + C\overline{D}$ using;
 - (i) NAND gates only
 - (ii) NOR gates only.

(6 marks)

c) By using five variable K –maps simplify; $F = \sum (1, 2, 5, 6, 7, 8, 9, 10, 13, 17, 18, 21, 22, 29)$

(15 marks)

Total 25 marks

Question 2

- a) A logic circuit is shown in **Figure 1**, simplify this circuit and show what single logic gate could replace this circuit. (10 marks)
- b) If the NAND gates shown, were replaced by NOR what logic function would the circuit become. (10 marks)
- c) Simplify $f = x \oplus x y \oplus y$

(5 marks)

Total 25 marks

Figure 1

PLEASE TURN THE PAGE.....

Question 3

a) Determine the output states for this S-R flip-flop, given the pulse inputs shown in **Figure 2**: (5 marks)

b) Determine the output states for this J-K flip-flop, given the pulse inputs shown in **Figure 3**. **(5 marks)**

Figure 3

c) Design a Moore sequence detector, which generates a pulse when the embedded sequence 101 has occurred. (15 marks)

Total 25 marks

PLEASE TURN THE PAGE.....

Question 4

a) Describe how an Analogue to digital convertor can be constructed using a Digital to Analogue convertor.

(6 marks)

- b) Explain the operation of Successive Approximation ADC, comparing the speed and accuracy with the counter ramp. (6 marks)
- c) Sketch a four bit R-2R ladder D-A and describe it's operation. (6 marks)
- d) If an R-2R ladder D-A has all eight bits set to logic one and Vref is 5volts,
 calculate the value of R_f to give an output voltage of -9.96 volts.
 (7 marks)

Total 25 marks

Question 5

- a) Describe the main differences between the following PLD devices, PROM, PLA,PAL and GAL, illustrate your answers with a suitable diagram. (8 marks)
- b) By completing the first column for the seven segment code shown in **Figure 4**,(**found on page 5**) derive a simplified expression for segment 'a' using a k-map and indicate on the PLD the fuse connections to generate the logic for segment 'a', **use Figure 6**. (**found on page 6**)

(8 marks)

- c) For the PLD device shown in **Figure 5 (found on page 5)** derive the Boolean algebra for the two functions given. Simplify the equations and state the function. (8 marks)
- d) If the gates G1and G2 have pin 2 connected to the supply how would the output function change.

(1 mark)

Total 25 marks

END OF QUESTIONS

PLEASE TURN THE PAGE FOR FIGURES 4, 5 AND 6...

(a) Seven segment display

BCD	Segment (ON = 1)						
ABCD	11	b	c	d	c	ſ	g
0000		1	1	- 1	-1	1	0
1000		- 1	1	0	0	0	0
0010		1	0	-1	. 1	0	1
1100		-1	1	1	0	0	1
0010		. 1	1	0	0	1	1
1010		0	1	. 1	0	1	1
0110		0	1	1	1		. 1
1111		1	1	0	0	0	0
000		1	-10	1	-1	1	-1
1001			1	0	0	1	-1
010		X.	X	x	X	X	×
011		×	x	x	X	x	X,
100		x	x	×	x	X	X
101		x	x	X.	x	X	X
110		X	x	X	X	x	X
1111		X	×	x	X	X	X

(b) Partially completed truth table

Figure 4

Figure 5

Ski

Figure 6

END OF PAPER