UNIVERSITY OF BOLTON

SCHOOL OF ENGINEERING

BEng (HONS) IN CIVIL ENGINEERING

SEMESTER TWO EXAMINATION 2018/2019

GROUND AND WATER STUDIES II

MODULE NO: CIE5005

Date: Tuesday 21st May 2019

Time: 10:00 - 13:00

INSTRUCTIONS TO CANDIDATES:

There are <u>TWO</u> Sections; A and B.

You will be supplied with TWO Answer Booklets by the Invigilator. Answer Section A in ONE Answer Booklet, and Section B in the other.

Section A : Q1 to Q4 (Answer <u>THREE</u> Questions from four).

Section B : Q5 to Q7 (Answer \underline{TWO} Questions from three).

Formulae and Definitions are provided.

Lined Graph Paper and Supplementary Answer Sheets are available for your use.

Ensure that you write your Candidate Number or Desk Number on each Figure, Supplementary Sheet or Sheet of Graph Paper you use to answer the selected questions.

All questions carry equal marks.

Marks for parts of questions are shown in brackets.

SECTION A – Answer **THREE** questions

1. a) Figure 1a below shows part of a storm drainage system. Identify the section(s) that could potentially cause hydraulic issues during the design phase, explaining the hydraulic conditions that are not being met and how the problem could be resolved.

b) Water flows through a 225mm diameter pipe at a rate of 48 litres/sec. The pipe is 600m long and has a Darcy friction factor λ of 0.027. It is proposed to increase the flow through the pipeline to 65 litres/sec, without increasing the friction loss, by the addition of a parallel pipeline of the same diameter and λ value as the existing pipeline. Determine the length of pipe required.

(12 marks)

Total 20 marks

- 2. a) Briefly outline the general design and construction criteria which is used for separate foul and storm drainage systems. (7 marks)
 - b) Using the Rational Method, check the adequacy of the storm water sewerage system detailed in Table Q2b. The system is to withstand a 1 in 10 year event and has a time of entry of 4 minutes. HRS tables and a rainfall table are provided.

(13 marks)

Total 20 marks

3. a) Sketch out the general shape of the Moody diagram for flow through pipes and briefly explain the factors which affect the value of the Darcy friction factor λ in each of the zones.

(10 marks)

b) Water, with a coefficient of dynamic viscosity μ of 1.12 x 10⁻³ kg/ms, flows from a storage tank to a service reservoir through a 300mm diameter pipeline at a rate of 70litres/sec. The water level in the storage tank is 310m AOD. The pipeline is 670m long and has a surface roughness k_s of 1.7mm. Determine the value of the Darcy friction factor λ and determine the water level in the reservoir. (10 marks)

$$h_{f} = \frac{32\mu Lv}{\rho g d^{2}} \qquad \qquad \frac{1}{\sqrt{\lambda}} = -2\log\left(\frac{k_{s}}{3.7d} + \frac{2.51}{Re\sqrt{\lambda}}\right)$$
$$\frac{1}{\sqrt{\lambda}} = -2\log\left[\frac{k_{s}}{3.7d} + \frac{5.1286}{R_{e}^{0.89}}\right]$$

Total 20 marks

4. a) Briefly explain the procedures required to determine flows in a loop network using the Hardy Cross method.

(7 marks)

b) Determine the approximate flows in each of the pipes in the network shown in Fig Q4 and Table Q4. Perform no more than three iterations in table Q4a is provided.

(11 marks)

c) If the total head at node A is 245m determine the available head at node C if it has an elevation of 130m.
 (2 marks)

Pipe	Length	Diameter	Darcy Friction
	(m)	(mm)	Factor (λ)
A - B	600	225	0.023
A - D	400	250	0.02
B - C	450	150	0.03
C - D	350	200	0.024

Table Q4

Total 20 marks

h										
Pipe length ref No	Pipe Length (m)	Pipe gradient (1 in)	Vel (m/s)	Time of flow (min)	Time of Conc. (min)	Rate of rainfall i (mm/hr)	Imp. Area (ha)	Cumulative Imp. Area A _P (ha)	Flow Q (1/s)	Pipe dia. (mm)
1.0	70	80				A A	0.06			150
1.1	78	91			K		0.15			225
2.0	64	83					0.10			150
2.1	55	59					0.12			225
1.2	75	53					0.23			300

Table Q2b.

To be handed in with answer book

Student ID No

Pipe	Length	Diameter		1 st estimate			2 nd estimate	e		3 rd estimate	
	(m)	(mm)	Q1 (litre/s)	h _f across Pipe (m)	h _f /Q1	Q2 (litre/s)	h _f across Pipe (m)	h _f /Q2	Q3 (litre/s)	h _f across Pipe (m)	h _f /Q3
A - B	600	225				(À,				
A - D	400	250									
В-С	450	150									
D - C	350	200			A)						
				ET							

Table Q4a

To be handed in with answer book

student ID No

ks = 0.600mm i=0.00015 to 0.004

Water (or sewage) at 15° C full bore conditions.

ie hydraulic gradient = 1 in 6667 to 1 in 250

velocities in m/s discharges in 1/s

7

continued

dient		ameters		100	105		175	2.00	205	250	275	300
	50	75	80	100	125	150	175	2 00	225	250	2/3	300
00075	0.123	0.165	0.172	0.201	0.235	0.266	0.295	0.322	0.348	0.373	0.397	0.42
1333	0.242	0.728	0.867	1.582	2.881	4,695	7.088	10.119	13.846	18.323	23.600	29.72
00080	0.128	0.171	0.178	0.208	0.243	0.275	0.305	0.333	0.360	0.386	0.411 24.397	0.43
	0.250						0.314	0.344	0.371	0.398	0.424	0.44
00085	0.132	0.176	0.184	0.215	0.251	0.284	7.563	10.797	14.771	19.544	25.170	31.70
00090	0.136	0.181	0.190	0.222	0.258	0.292	0.324	0.354	0.383	0.410	0.436	0.46
1111	0.267	0.802	0.954	1.741	3.169	5.162	7.791	11.120	15.213	20.128	25.921	32.64
00095	0.140	0.187	0.195	0.228	0.266	0.300	0.333	0.364	0.393	0.422	0.449	0.47
-	0.275	0.825	0.982	1.791	3.260	5.309						
00100	0.144	0.192	0.201	0.234	0.273	0.309	0.342 8.227	0.374	0.404	0.433	0.461	0.48
00110	0.151	0.202	0.211	0.246	0.287	0.324	0.359	0.393	0.424	0.455	0.484	0.51
909	0.297	0.891	1.061	1.934	3.518	5.729	8.643	12.334	16.869	22.315	28.734	36.18
00120	0.158	0.211	0.221	0.258	0.300	0.339	0.376	0.411	0.444	0.475	0.506	0.53
833	0.311	0.933	1.110	2.024	3.681	5.993	9.040	12.899	17.641	23.335	30.045	37.83
00130	0.165	0.220	0.230	0.269	0.313	0.353	0.392	0.428	0.462	0.495	0.527	0.55
769	0.325	0.973	1.158	2.110	3.837	6.246	9.421	13.441	18.382	24.313	31.303	39.41
.00140	0.172	0.229	0.239	0.279	0.325	0.367	0.407	0.444	0.480	0.514	0.547	0.57
	0.338	1.012		2.193				_	0.498	0.533	0.567	0.60
.00150	0.178	0.237	0.248	0.289	0.337	0.381	0.422	0.461	19.782	26.162	33.680	42.40
.00160	0.185	0.246	0.257	0.299	0.348	0.393	0.436	0.476	0.514	0.551	0.586	0.6
/ 625	0.362	1.085	1.291	2.351	4.273	6.953	10.484	14.954	20.447	27.041	34.810	43.82
.00170	0.191	0.253	0.265	0.309	0.359	0.406	0.450	0.491	0.530	0.568	0.605	0.6
/ 588	0.374	1.120	1.332	2.426	4.409	7,173	10.816	15.427	21.092	27.892	35.905	45.20
.00180 / 556	0.196	0.261	0.273	0.318	0.370	0.418	0.463	0.506	0.546	0.585	0.622	0.6
	0.386	1,154	1.373	2.499	4.541	7.388	11.138					0.6
.00190 / 526	0.202	0.269	0.281	0.327	0.381	0.430	0.476	0.520	0.562	0.601	0.640	47.84
.00200	0.208	0.276	0.288	0.336	0.391	0.441	0.489	0.534	0.576	0.617	0.657	0.6
/ 500	0.408	1.219	1.450	2.639	4.795	7.799	11.757	16.767	22.921	30.307	39.010	49.1
.00220	0.218	0.290	0.303	0.353	0.410	0.463	0.513	0.560	0.605	0.648	0.689	0.7
/ 455	0.429	1.281	1.524	2.773	5.036	8.190	12.346	17.605	24.064	31.817	40.952	51.5
00240	0.228	0.303	0.317	0.369	0.429	0.485	0.537	0.586	0.633	0.678	0.721	0.7
	0.449	1.340	1.594	2.900	5.267	8.565	12.908	18.405	25.157	33.261		0.7
.00260	0.238	0.316	0.331	0.385	0.447	0.505	0.559	0.610	0.659	0.706	0.751	56.1
.00280	0.248	0.329	0.343	0.400	0.465	0.525	0.581	0.634	0.684	0.733	0.780	0.8
/ 357	0.486	1.452	1.727	3.140	5.701	9.269	13.967	19,913	27.215	35.978	46.301	58.2
.00300	0.257	0.341	0.356	0.414	0.481	0.543	0.602	0.657	0.709	0.759	0.807	0.8
/ 333	0.504	1.505	1.789	3.254	5.907	9.602	14.469	20.626	28.189	37,264	47.954	60.3
.00320	0.266	0.352	0.368	0.428	0.498	0.562	0.622	0.679	0.733	0.784	0.834	0.8
/ 313	0.521	1.556	1.850	3.364	6.106	9.925	14.953	21.316	29.131	38.507	49.553	62.3
.00340	0.274	0.363	0.380	0.442	0.513	0.579	0.641	0.700	0.756	0.809	0.860	0.9
	0.538	1.605	1.909						0.778	0.833	0.886	0.9
/ 278	0.282	0.374	0.391	0.455	0.528	0.596	0.660	0.720	30.930	40.883	52.608	66.2
.00380	0.290	0.385	0.402	0.468	0.543	0.613	0.679	0.741	0.800	0.856	0.910	0.9
/ 263	0.570	1.700	2.022	3,675	6.668	10.836	16.324	23.267	31.792	42,022	54.072	68.0

Coefficient for part-full pipes:

	i = 0.0	0·600mm 204 to 0·1 draulic gr 50 to 1 in			full bor yelociti	er sewage e condit es in m es in l/s	ions. /s	С				
ent	Pipe 50	diameters 75	in mm : 80	100	125	150	175	200	225	250	275	300
00	0.298	0.395	0.413	0.480	0.558	0.629	0.697	0.760	0.821	0.879	0.934 55.498	0.988 69.846
20	0.306	0.405	0.423	0.493	0.572	0.645	0.714	0.779	0.841	0.901	0.958	1.013
40	0.313	0.415	0.434	0.504	0.586	0.661	0.731	0.798	0.861	0.922	0.981	1.037
2	0.321	0.425	0.444	0.516	0.599	0.676	0.748 17.992	0.816	0.881	0.943	1.003 59.574	1.061 74.973
	0.328	0.434	0.454	0.527	0.612	0.691	0.764	0.834	0.900	0.964	1.025	1.084
	0.335 0.658	0.443	0.463	0.539	0.625	0.705	0.780	0.852	0.919	0.984 48.301	1.046	1.106
	0.352	0.466	0.486	0.566	0.656	0.740	0.819	0.894	0.965	1.033 50.692	1.098	1.161 82.071
	0.368	0.487 2.151	0.509	0.591	0.686	0.774	0.856	0.934 29.345	1.008	1.079	1.147	1.213
	0.384	0.507	0.530	0.616	0.715	0.806	0.892	0.973	1.050 41.748	1.124	1.195 70.972	1.263 89.307
	0.399	0.527	0.550	0.640	0.742	0.837	0.926	1.010	1.090	1.167	1.241	1.312
	0.413	0.546 2.411	0.570	0.663	0.769	0.867	0.959 23.064	1.046	1.129 44.885	1.208 59.310	1.285 76.298	1.358 96.005
	0.427	0.564	0.589	0.685	0.794	0.896	0.991 23.832	1.081 33.952	1.166	1.248 61.278	1.327 78.828	1.403 99.187
	0.441	0.582	0.608	0.706	0.819	0.924	1.022	1.114 35.011	1.203	1.287 63.185	1.368 81.280	1.447
	0.454	0.599 2.647	0.626	0.727	0.843	0.951	1.052	1.147 36.038	1.238	1.325	1.409 83.660	1.489 105.264
	0.466	0.616	0.643	0.747	0.867	0.977	1.081 26.000	1.179 37.038	1.272	1.362	1.448	1.530 108.176
	0.479	0.632	0.660 3.320	0.767	0.890 10.918	1.003 17.726	1.109 26.684	1.210 38.012	1.306 51.915	1.397 68.593	1.485 88.231	1.571 111.013
	0.503	0.664 2.933	0.693 3.485	0.805	0.934	1.053 18.604	1.164 28.003	1.270 39.889	1.370	1.466	1.559 92.579	1.648 116.480
	0.526	0.694 3.066	0.725 3.643	0.842	0.976	1.100	1.217 29.263	1.327 41.682	1.432	1.532	1.629 96.734	1.722 121.705
	0.548	0.723 3.193	0.755	0.877	1.016	1.146	1.267 30.472	1.382 43.402	1.491 59.272	1.595 78.306	1.696 100.718	1.793 126.716
	0.569	0.751 3.316	0.784 3.941	0.910 7.149	1.055 12.950	1.189 21.019	1.315 31.635	1.434 45.057	1.548 61.531	1.656 81.288	1.760 104.553	1.861, 131.538
	0.590	0.777 3.435	0.812	0.943	1.093 13.410	1.232 21.766	1.362 32.758	1.485	1.602	1.715 84.166	1.823 108.252	1.927 136.191
	0.609	0.803 3.549	0.839 4.218	0.974	1.129 13.856	1.273	1.407 33.843	1.534 48.199	1.655 65.819	1.771 86.950	1.883 111.831	1.990 140.691
	0.628	0.829 3.660	0.865	1.004 7.889	1.164 14.288	1.312 23.188	1.451 34.895	1.582 49.697	1.707	1.826 89.647	1.941 115.299	2.052 145.052
	0.647	0.853 3.768	0.891 4.478	1.034 8.121	1.198 14.707	1.351 23.867	1.493 35.917	1.628 51.151	1.757 69.846	1.880 92.267	1.998 118.667	2.112 149.287
	0.665	0.877 3.873	0.916	1.063 8.347	1.232	1.388 24.528	1.535 36.911	1.673 52.565	1.805 71.776	1.932 94.815	2.053 121.942	2.170 153.406
	Coeff	icient for	part-fi	ull pip	es:							
	25	40	40	50	60	80	90	100	120	130	140	150

ks = 0.600mm i < 0.1

		RETURN	PERIOD (YEA	(RS)			
DURATION	1	2	6	10	20	50	100
2.0 MINS	85.6	93.4	120.5	138.3	158	187	213
2.5 MINS	76.5	87.5	113.4	130.4	149	177	202
3.0 MINS	66.3	82.3	107.2	123.4	141	168	192
3.5 MINS	62.8	77.8	101.7	117.3	135	161	184
4.0 MINS	69.6	73.8	96.8	111.B	128	154	176
4.1 MINS	69.1	73.1	95.9	110.8	127	152	174
4.2 MINS	68.5	72.3	95.0	109.8	126	151	173
4.3 MINS	67.9	71.6	94.1	108.8	125	150	172 170
4.4 MINS	57.4	71.0	93.2	107.9 106.9	124 123	149 148	169
4.5 MINS	56.9 56.3	70.3 69.6	92.4 91.6	106.0	123	146	168
4.6 MINS 4.7 MINS	65.B	*69.0	8.09	105.1	121	145	166
4.8 MINS	55.3	68.3	90.0	104.2	120	144	165
4.9 MINS	54.8	67.7	89.2	103.4	119	143	164
5.0 MINS	54.3	67.1	88.5	102.5	118	142	163
5.1 MINS	53.9	66.5	87.7	101.7	117	141	162
5.2 MINS	53.4	65.9	87.0	100.9	116	140	160
5.3 MINS	53.0	65.4	86.3	100.1	115	139	159
5.4 MINS	52.5	64.8	85.6	99.3	115	138	158
5.5 MINS	52.1	64.3	84.9	98.5	114	137	157
5.6 MINS	51.7	63.7	84.2	97.B	113	136	156
5.7 MINS	51.2	63.2	83.5	97.0	112	135 134	155 154
5.8 MINS	50.8 50.4	62.7	82.9 82.3	96.3 95.6	111	133	153
5.9 MINS	50.0	62.2 61.7	81.6	94.9	110	132	152
6.0 MINS 6.2 MINS	49.3	60.7	80.4	93.5	108	130	150
6.4 MINS	48.5	59.8	79.2	92.2	107	129	148
6.6 MINS	47.B	58.9	78.1	90.9	105	127	146
6.8 MINS	47.1	58.0	77.0	89.6	104	125	144
7.0 MINS	46.4	57.2	75.9	88.4	102	124	143
7.2 MINS	45.B	56.4	74.9	87.3	101	122	141
7.4 MINS	45.2	55.6	739	86.1	100	121	139
7.6 MINS	44.5	54.B	72.9	85.0	89	119	138
7.8 MINS	44.0	64.1	71,9	84.0	97	118	136
8.0 MINS	43.4	53.4	71.0	82.9	96	117	135
8.2 MINS	42.8	52.7	70.1	81.9 81.0	95	115	133
B.4 MINS	42.3	52.0	69.3	80.0	94 93	114 113	132 131
8.6 MINS	41.8	51.4 50.7	68.4 67.6	79.1	92	112	129
8.8 MINS 9.0 MINS	41.2 40.8	50.1	66.8	78.2	91	110	128
9.2 MINS	40.3	49.5	66.0	77.3	90	109	127
9.4 MINS	39.9	49.0	65.3	76.4	89	108	125
9.6 MINS	39.4	48.4	64.6	75.6	88	107	124
9.8 MINS	39.0	47.9	63.8	74.8	87	106	123
10.0 MINS	38.6	47.4	63.1	74.0	86	105	121
10.5 MINS	37.6	46.1	61.5	72.1	84	102	118
11.0 MINS	36.7	44,9	69.9	70.2	82	100	116
11.5 MINS	35.8	43.8	58.4	68.5	80	97	113
12.0 MINS	35.0	42.8	57.0	66.9	78	95	111
12.5 MINS	34.2	41.8 40.8	55.7 54.4	65.4 64.0	76 75	93 91	108 106
13.0 MINS 13.5 MINS	33.4 32.7	39.9	53.3	62.6	75	89	104
14.0 MINS	32.0	39.1	52.1	61.3	72	87	102
14.5 MINS	31.4	38.3	51.0	60.0	70	86	100
15.0 MINS	30.8	37.5	50.0	58.B	69	84	98
16.0 MINS	29.6	36.1	48.1	56.6	66	81	94
17.0 MINS	28.6	34.8	46.3	54.6	64	78	91
18.0 MINS	27.6	33.5	44.7	52.7	62	76	B 8

END OF SECTION A

<u>SECTION B</u> – Answer <u>TWO</u> questions

- a) A quick 'UU' triaxial compression test is to be carried out on a cylindrical clay sample. Show how Mohr's stress circles will be used to characterise the clay behaviour. Ensure that you label <u>all</u> axes and key points on the Mohr's stress circles you sketch. Also sketch the cylinder of clay showing the direction of <u>all</u> key stresses involved on key planes.
 (5 marks)
 - A series of 'quick' unconsolidated undrained triaxial tests were conducted on a sample of clay with the results obtained being as follows:

Test Number	1	2	3
Cell Pressure (kN/m ²)	100	200	400
Vertical Stress at Failure (kN/m ²)	207	311	512

Using Figure Q5b and constructing Mohr's stress circles, determine the shear strength parameters of the soil sample. Using these values describe the clay soil being tested in geotechnical terms.

(8 marks)

c) State <u>three</u> shear strength testing methods available for sands in the field and/or in the laboratory, briefly describing limitations and advantages for each

(4 marks)

d) Explain what you would expect to occur when carrying out a shear box test on a dense sand, using sketch diagrams, as appropriate, to explain why this behaviour is expected.

(3 marks)

Total 20 marks

STUDENT ID :

- 6. a) A flexible foundation of length 3m and breadth 2m is to exert a uniform pressure of 120kN/m² on the surface of a 8m layer of soil. Using Figure Q6a, determine the immediate settlement under the centre of the foundation if the elastic soil stiffness (E) is assumed to be 4MN/m².
 (6 marks)
 - b) A flexible foundation of length 3m and breadth 2m is to exert a uniform pressure of 120kN/m² on the surface of a layer of soil of assumed infinite thickness. Using Figure Q6b, determine the total stress at a depth of 5m beneath a corner of the foundation.

(5 marks)

c) The following results were obtained from an oedometer test on a specimen of saturated clay:

Applied Stress (kN/m ²)	0	25	50	100	200	400	800
Void Ratio	0.970	0.935	0.896	0.865	0.818	0.769	0.723

i) Determine the value of m_v for an effective stress range from $20kN/m^2$ to $120kN/m^2$.

(6 marks)

ii) Calculate the consolidation settlement for a 4m thick layer of this clay, when the effective stress changes from 20kN/m² to 120kN/m².

(3 marks)

Total 20 marks

Fig Q6b

7. a) Explain the difference between 'compaction' and 'consolidation' using geotechnical reference to void ratio, pore water pressure, soil mineralogy and the most appropriate "stress state" (and any other parameters you deem relevant). You must provide a detailed description of the process of consolidation in your answer to obtain maximum marks.

(5 marks)

b) Using Figure Q7c determine the total stress, pore water pressure and effective stress at each strata change and at the location of the water table and hence plot a graph to illustrate their variation with depth from ground surface to a depth of 16m below ground level. The water table is located at a depth of 5m below ground level within a 9m thick deposit of sandy gravel overlying 7m of clay.

(15 marks)

Total 20 marks

				•					
Water	<u>Sandy Gravel</u> Bulk Unit Weight Saturated Unit Weight	= =	20kN/m ³ 20.5kN/m ³	5m					
Table				4m					
	<u>Clay</u> Bulk Unit Weight Saturated Unit Weight	= =	19.5kN/m ³ 21.5kN/m ³	7m					
NOTE: Assu	NOTE: Assume that Unit Weight of Water = 9.81kN/m ³								
		Figure	Q7c						
	E.A.M		PL	EASE TURN THE PAGE					
RA									

Formulae

$$\rho_{i} = \underline{aB} \cdot I \qquad \qquad q = \underline{kh} \cdot N_{f}$$

$$\Delta e = \underline{AH} \cdot (1 + e_{o}) \qquad \qquad m_{v} = \underline{Ae} \cdot (\underline{1})$$

$$\sigma_{v} = \sigma_{v} + u \qquad \qquad \Delta H = m_{v} \Delta \sigma_{v} \cdot H$$

$$\sigma_{v} = q I$$

$$R = 0.564 \text{ S (square grid)}$$

$$(1 - U) = (1 - U_{r}) (1 - U_{v})$$

$$T_{r} = (c_{h} t) / (4 R^{2})$$

$$T_{v} = (c_{v} t) / d^{2}$$
END OF QUESTIONS

Terminology, symbols, units and formula sheets over the page....

TERMINOLOGY, SYMBOLS AND UNITS

	Term Volume Mass Gravity Weight	<u>Symbol</u> g	<u>Units</u> m ³ kg 9.81 m/sec ² kN = (kg x 9.81)/1000
	Total volume	V	m ³
	Volume of air	VA	m ³
	Volume of water	Vw	m ³
	Volume of voids	Vv	m ³
	Volume of Solids	Vs	m ³
	Mass of water	Mw	kg
	Mass of solids	Ms	kg
	Total mass	M	kN
	Specific gravity	Gs	None
	Density of water	ρw	1000kg/m ³
	Unit weight of water	γw	9.81 kN/m ³
	Void ratio	e	None
	Degree of saturation	Sr	None
	Moisture content	w	None
	Porosity	n	None
RA	Soil Bulk density Dry density Saturated density Soil Bulk unit weight Dry unit weight Saturated unit weight	ρ _b ρ _d ρsat γ _b γ _d γsat	kg/m ³ kg/m ³ kg/m ³ kN/m ³ kN/m ³

DEFINITIONS

Term	Expression	
Density of water, $\rho_{\rm W}$	mass of water volume of water	$\frac{M_w}{V_w}$
Unit weight of water, γ_{w}	weight of water volume of water	$\frac{W_w}{V_w}$
Specific gravity, Gs	density of solids density of water	$\frac{\rho_{s}}{\rho_{w}}$
Water content, w	mass of water mass of solids	Mw Ms
Void ratio, e	volume of voids volume of solids	Vv Vs
Degree of saturation, Sr	volume of water volume of voids	$\frac{V_w}{V_v}$
Porosity, n	volume of voids total volume	$\frac{V_{v}}{V}$
Soil Bulk density, $ ho_{ m b}$	total mass total volume	M V
Dry density, $\rho_{\rm d}$	mass of solids total volume	Ms V
Saturated density, ρ_{sat}	total saturated mas total volume	ss <u>M</u> V
Soil Bulk unit weight, γ_b	<u>total weight</u> total volume	W/V
Dry unit weight, γ_d	weight of solids total volume	Ws V
Saturated unit weight, γ_{sat}	total saturated weig total volume	<u>ght W</u> V
I	Please turn the page)

BASIC PROPERTIES Formulae:

Void space relationship from soil model $w G_s = S_r e$

 $\rho_{\rm b} = \frac{(G_{\rm s} + S_{\rm r} e)\rho_{\rm W}}{1 + e}$ **Bulk Density** $\rho_{\rm b} = \frac{\rho_{\rm W} \ {\rm G}_{\rm s}(1+{\rm w})}{1+{\rm e}}$ Dry Density ho dе hod 1 + w Porosity e + e n **END OF PAPER**