UNIVERSITY OF BOLTON

SCHOOL OF ENGINEERING

BEng (HONS) IN CIVIL ENGINEERING

SEMESTER TWO EXAMINATION 2018/2019

GROUND AND WATER STUDIES II

MODULE NO: CIE5005

Date: Tuesday 21 ${ }^{\text {st }}$ May 2019

INSTRUCTIONS TO CANDIDATES:

Time: 10:00-13:00

There are TWO Sections; A and B.
You will be supplied with TWO Answer Booklets by the Invigilator. Answer Section A in ONE Answer Booklet, and Section B in the other.

Section A : Q1 to Q4 (Answer THREE Questions from four).

Section B : Q5 to Q7 (Answer TWO Questions from three).

Formulae and Definitions are provided.
Lined Graph Paper and Supplementary Answer Sheets are available for your use.

Ensure that you write your Candidate Number or Desk Number on each Figure, Supplementary Sheet or Sheet of Graph Paper you use to answer the selected questions.

All questions carry equal marks.

School of Engineering
BEng (Hons) in Civil Engineering
Semester Two Examination 2018/2019
Ground and Water Studies II
Module No. CIE5005
Marks for parts of questions are shown in brackets.

School of Engineering
BEng (Hons) in Civil Engineering
Semester Two Examination 2018/2019
Ground and Water Studies II
Module No. CIE5005

SECTION A - Answer THREE questions

1. a) Figure 1 a below shows part of a storm drainage system. Identify the section(s) that could potentially cause hydraulic issues during the design phase, explaining the hydraulic conditions that are not being met and how the problem could be resolved.

Figure 1a
b) Water flows through a 225 mm diameter pipe at a rate of 48 litres $/ \mathrm{sec}$. The pipe is 600 m long and has a Darcy friction factor λ of 0.027 . It is proposed to increase the flow through the pipeline to 65 litres/sec, without increasing the friction loss, by the addition of a parallel pipeline of the same diameter and λ value as the existing pipeline. Determine the length of pipe required.
(12 marks)
Total 20 marks

PLEASE TURN THE PAGE....

School of Engineering
BEng (Hons) in Civil Engineering
Semester Two Examination 2018/2019
Ground and Water Studies II
Module No. CIE5005
2. a) Briefly outline the general design and construction criteria which is used for separate foul and storm drainage systems.
(7 marks)
b) Using the Rational Method, check the adequacy of the storm water sewerage system detailed in Table Q2b. The system is to withstand a 1 in 10 year event and has a time of entry of 4 minutes. HRS tables and a rainfall table are provided.
(13 marks)
Total 20 marks
3. a) Sketch out the general shape of the Moody diagram for flow through pipes and briefly explain the factors which affect the value of the Darcy friction factor λ in each of the zones.
(10 marks)
b) Water, with a coefficient of dynamic viscosity μ of $1.12 \times 10^{-3} \mathrm{~kg} / \mathrm{ms}$, flows from a storage tank to a service reservoir through a 300 mm diameter pipeline at a rate of 70 litres $/ \mathrm{sec}$. The water level in the storage tank is 310 m AOD. The pipeline is 670 m long and has a surface roughness k_{s} of 1.7 mm . Determine the value of the Darcy friction factor λ and determine the water level in the reservoir.
(10 marks)

$$
\begin{gathered}
\mathrm{h}_{\mathrm{f}}=\frac{32 \mu \mathrm{LV}}{\rho \mathrm{gd}^{2}} \quad \frac{1}{\sqrt{\lambda}}=-2 \log \left(\frac{\mathrm{k}_{\mathrm{s}}}{3.7 \mathrm{~d}}+\frac{2.51}{\operatorname{Re} \sqrt{\lambda}}\right) \\
\frac{1}{\sqrt{\lambda}}=-2 \log \left[\frac{\mathrm{k}_{\mathrm{s}}}{3.7 \mathrm{~d}}+\frac{5.1286}{\mathrm{R}_{\mathrm{e}}^{0.89}}\right]
\end{gathered}
$$

Total 20 marks

PLEASE TURN THE PAGE....

School of Engineering
BEng (Hons) in Civil Engineering
Semester Two Examination 2018/2019
Ground and Water Studies II
Module No. CIE5005
4. a) Briefly explain the procedures required to determine flows in a loop network using the Hardy Cross method.
b) Determine the approximate flows in each of the pipes in the network shown in Fig Q4 and Table Q4. Perform no more than three iterations in table Q4a is provided.
(11 marks)
c) If the total head at node A is 245 m determine the available head at node C if it has an elevation of 130 m .
(2 marks)

Fig Q4

Pipe	Length (m)	Diameter (mm)	Darcy Friction Factor (λ)
A - B	600	225	0.023
A-D	400	250	0.02
B-C	450	150	0.03
C-D	350	200	0.024

Table Q4

Pipe length ref No	Pipe Length (m)	Pipe gradient (1 in)	Vel $(\mathrm{m} / \mathrm{s})$	Time of flow (min)	Time of Conc. (min)	Rate of rainfall i (mm/hr)	Imp. Area (ha)	Cumulative Imp. Area Ap_{P} (ha)	$\begin{gathered} \text { Flow } \\ \mathrm{Q} \\ (1 / \mathrm{s}) \end{gathered}$	Pipe dia. (mm)
1.0	70	80					0.06			150
1.1	78	91					0.15			225
2.0	64	83					0.10			150
2.1	55	59					0.12			225
1.2	75	53					0.23			300

Table Q2b.
To be handed in with answer book

Student ID No \qquad

School of Engineering
BEng (Hons) in Civil Engineering
Semester Two Examination 2018/2019
Ground and Water Studies II
Module No. CIE5005

Pipe	Length	Diameter	$1{ }^{\text {st }}$ estimate			$2^{\text {nd }}$ estimate			$3^{\text {rd }}$ estimate		
	(m)	(mm)	$\begin{gathered} \text { Q1 } \\ \text { (litre/s) } \end{gathered}$	h_{f} across Pipe (m)	$\mathbf{h f}_{\text {f }}$ Q1	$\begin{gathered} \text { Q2 } \\ \text { (litre/s) } \end{gathered}$	h_{f} across Pipe (m)	$h_{t} / \text { Q2 }$	$\begin{gathered} \text { Q3 } \\ \text { (litre/s) } \end{gathered}$	h_{f} across Pipe (m)	$h_{\text {f/ } / \text { Q3 }}$
A - B	600	225									
A - D	400	250									
B - C	450	150									
D - C	350	200									

$k s=0.600 \mathrm{~mm}$
$\mathrm{i}=0.00015$ to 0.004
ie hydraulic gradient $=$
1 in 6667 to 1 in 250

Water (or sewage) at $15^{\circ} \mathrm{C}$ full bore conditions
velocities in m / s
contimuar
discharges in 1/s

Gradient	$\underset{50}{\text { Pipe di}}$	$\begin{aligned} & \text { eters } \\ & 75 \end{aligned}$	$\underset{80}{\mathrm{~mm}}:$	100	125	150	175	200	225	250	275	300
$\begin{aligned} & 0,00075 \\ & 1 / 1335 \end{aligned}$	0.123	0.165	0.172	0.201	0.235	0.266	0.295	0.322	0.368	0.373	0.397	0.421
	0.242	0.728	0.887	1.582	2.881	4.695	7.088	10.119	13.846	18.323	23.600	29.728
9, 1 120090	0.128	0.171	0.178	0.208	0.243	0.275	0.305	0.333	0.360	0.386	0.411	0.435
	0.250	0.753	0.897	1.637	2.980	4.856	7.329	10.463	14.316	18.943	24.397	30.731
$\begin{aligned} & 0.00085 \\ & 11 \\ & \hline 176 \end{aligned}$	0.138	0.176	0.186	0.215	0.251	0.256	0.316	0.344	0.371	0.398	0.424	0.649
	0.259	0.778	0.926	1.690	3.076	5.011	7.563	10.797	14.771	19.564	25.170	31.703
$\begin{array}{r} 0.00090 \\ 11 \quad 1111 \end{array}$	0.136	0.181	0.190	0.222	0.258	0.292	0.324	0.356	0.383	0.410	0.436	0.462
	0.267	0.802	0.954	1.741	3. 169	5.162	7.791	11.120	15.213	20.128	25.921	32.647
$\begin{aligned} & 0.00095 \\ & 1 / 1053 \end{aligned}$	0.160	0.187	0.195	0.228	0.266	0.300	0.333	0.364	0.393	0.422	0.649	0.475
	0.275	0.825	0.982	1.791	3.260	5.309	8.012	11.635	15.643	20.696	26.651	33.566
$\begin{aligned} & 0.0100 \\ & 1 / 1000 \end{aligned}$	0.144	0.192	0.201	0.234	0.273	0.309	0.362	0.374	0.404	0.433	0.461	0.488
	0.282	0.848	1.009	1.849	3.348	5.453	8.227	11.742	16.062	21.249	27.363	34.461
-1/00110 909	0.151	0.202	0.211	0.266	0.287	0.324	0.359	0.393	0.424	0.655	0.484	0.512
	0.297	0.891	1.061	1.936	5.518	5.729	8.663	12.334	16.869	22.315	28.734	36.186
$\begin{aligned} & 0,00120 \\ & 1 ; \\ & 835 \end{aligned}$	0. 158	0.211	0.221	0.258	0.300	0.339	0.376	0.411	0.646	0.675	0.506	0.535
	0.311	0.933	1.110	2.024	3.681	5.993	9.060	12.890	17.641	23.335	30.045	37.835
$\begin{array}{r} 0.00130 \\ 1 ; \\ \hline 169 \end{array}$	0.165	0.220	0.230	0.269	0.313	0.353	0.392	0.428	0.462	0.495	0.527	0.558
	0.325	0.973	1.158	2.110	5.857	6.246	9.421	13.441	15.388	26.313	31.303	39.416
${ }_{1 /}^{0.00140} 714$	0.172	0.229	0.239	0.279	0.325	0.367	0.407	0.464	0.480	0.514	0.547	0.579
	0.338	1.012	1.204	2.193	3.988	6.690	9.788	13.963	19.094	25.254	32.513	40.938
$\begin{aligned} & 0,00150 \\ & 1 / \quad 667 \end{aligned}$	0.178	0.237	0.248	0.289	0.337	0.381	0.422	0.461	0.498	0.533	0.567	0.600
	0.350	1.049	1.248	2.273	4.133	6.725	10.142	14.667	19.782	26.162	33.680	42.467
$\begin{aligned} & 0.00160 \\ & 1 ; \quad 625 \end{aligned}$	0. 135	0.266	0.257	0.299	0.368	0.303	0.636	0.476	0.514	0.551	0.586	0.620
	0.362	1.085	1.291	2.351	4.273	6.953	10.484	14.955	20.447	27.041	34.810	43.828
$\begin{array}{r} 0.00170 \\ \text { i) } 588 \end{array}$	0.191	0.253	0.265	0.309	0.359	0.406	0.450	0.691	0.530	0.568	0.605	0.660
	0.376	1.120	1.332	2.426	4.499	7.173	10.816	15.427	21.092	27.198	35.905	45.205
$\begin{aligned} & 0,00180 \\ & 1 \% \quad 556 \end{aligned}$	0.196	0.261	0.273	0.318	0.370	0.418	0.463	0.506	0.546	0.585	0.622	0.658
	0.386	1.154	1.373	2.499	4.541	7.388	11.158	15.886	21.718	25.719	36.908	66.542
$\begin{array}{r} 0.00190 \\ 1 / 526 \end{array}$	0.202	0.269	0.281	0.327	0.381	0.430	0.476	0.520	0.562	0.601	0.660	0.677
	0.397	1.187	1.412	2.570	4.670	7.596	11.451	16.332	22.327	29.523	38.002	47.843
$\begin{array}{r} 0.00200 \\ 1 ; \quad 500 \end{array}$	0.208	0.276	0.28*	0.336	0.391	0.441	0.489	0.534	0.576	0.617	0.657	0.695
	0.608	1.219	1.450	2.639	4.795	7.799	11.757	16.767	22.921	50.307	39.010	49.110
$\begin{array}{r} 0.00220 \\ 1 \% \\ \hline 55 \end{array}$	0.218	0.290	0.303	0.353	0.410	0.463	0.513	0.560	0.605	0.668	0.689	0.729
	0.429	1.281	1.526	2.773	5.036	8. 190	12.366	17.605	24.064	31.817	40.952	51.553
$\begin{aligned} & 0,00240 \\ & 1 j \quad 417 \end{aligned}$	0.228	0.303	0.317	0.369	0.629	0.485	0.537	0.586	0.633	0.678	0.721	0.762
	0.469	1.340	1.594	2.900	5.267	8.565	12.908	18.405	25.157	33.261	42.808	53.887
$\begin{aligned} & 0.00260 \\ & 1 / 335 \end{aligned}$	0.235	0.516	0.331	0.385	0.647	0.505	0.559	0.610	0.659	0.706	0.751	0.794
	0.468	1,397	1.662	3.023	5.488	8.923	13.468	19. 174	26.206	34.046	* 46.588	56.126
$\begin{aligned} & 0.00280 \\ & 1 / \quad 357 \end{aligned}$	0.248	0.329	0.363	0.400	0.465	0.525	0.581	0.636	0.684	0.733	0.780	0.625
	0.486	1.452	4.727	3.140	5.701	9.269	13.967	19.913	27.215	35.978	46.301	58.281
$\begin{aligned} & 0.00300 \\ & 1 / \$ 33 \end{aligned}$	0.257	0.341	0.356	0.614	0.451	0.563	0.602	0.657	0.709	0.759	0.807	0.854
	0.504	1.505	1.789	3.254	5.907	9.602	14.669	20.626	28.189	37.264	47.954	60.360
$\begin{array}{r} \hline 0.00320 \\ 1 ; \quad 313 \end{array}$	0.266	0.352	0.368	0.428	0.498	0.362	0.622	0.679	0.733	0.784	0.834	0.882
	0.521	1.556	1.850	3.364	6. 106	9.925	14.953	21.316	29.131	58.507	69.553	62.371
$\begin{aligned} & 0.00340 \\ & 1 / 296 \end{aligned}$	0.274	0.363	0.380	0.442	0.513	0.579	0.641	0.700	0.756	0.809	0.860	0.910
	0.538	1.605	1.909	3.471	6.298	10.237	15.483	21.985	30.044	39.713	51,103	64.320
$\begin{aligned} & 0,00360 \\ & 1 ; 278 \end{aligned}$	0.282	0.374	0.391	0.455	0.528	0.596	0.660	0.720	0.778	0.853	0.886	0.937
	0.555	1.653	1.966	3.576	8.486	10.540	15.850	22.635	30.930	40.883	52.608	66.212
$\begin{aligned} & 0.00380 \\ & 1 ; \begin{array}{l} 263 \end{array} \end{aligned}$	0.290	0.385	0.402	0.468	0.543	0.613	0.679	0.741	0.800	0.856	0.910	0.963
	0.570	1.700	2.022	3.675	6.688	10.836	16.324	23.267	31.792	42.028	54.072	68.053

Coefficient for mart-full pipes:

Page 9 of 22

School of Engineering

BEng (Hons) in Civil Engineering
Semester Two Examination 2018/2019
Ground and Water Studies II
Module No. CIE5005

7
continued
$=0.600 \mathrm{~mm}$
ie hydraulic gradient =
1 in 250 to 1 in 10

Water (or sewage) at $15^{\circ} \mathrm{C}$
full bore conditions.
velocities in m / s
discharges in l/s

School of Engineering
BEng (Hons) in Civil Engineering
Semester Two Examination 2018/2019
Ground and Water Studies II
Module No. CIE5005

RETURN PERIOD (YEARS)

DURATION	1	2	5	\%	20	50	100
2.0 MINS	85.6	93.4	120.5	138.3	158	187	213
2.5 MINS	76.5	87.5	183.4	130.4	149	177	202
30 MINS	66.3	82.3	1072	123.4	141	168	182
3.5 MINS	628	77.8	101.7	117.3	135	861	184
4.0 MINS	59.6	73.8	96.8	1118	128	854	176
4.1 MINS	59.1	73.1	959	110.8	127	152	174
42 MINS	68.5	72.3	95.0	109.8	126	151	173
4.3 MINS	67.8	71.6	84.1	108.8	125	150	172
4.4 MINS	57.4	710	83.2	1079	124	149	170
4.5 MINS	56.9	70.3	82.4	106.9	123	148	169
4.6 MINS	56.3	69.6	91.6	106.0	122	146	168
4.7 MINS	55.8	-69.0	90.8	105.1	121	145	166
48 MINS	85.3	68.3	90.0	1042	120	144	865
49 MINS	54.8	67.7	89.2	103.4	119	143	164
5.0 MINS	54.3	67.1	88.5	102.5	818	142	163
5.1 MINS	53.9	66.5	87.7	101.7	117	141	162
5.2 MINS	53.4	65.9	87.0	100.9	116	140	160
5.3 MINS	53.0	65.4	86.3	100.1	185	139	159
5.4MINS	52.5	64.8	85.6	99.3	115	138	158
5.5 MINS	52.1	64.3	84.9	88.5	114	137	157
5.6 MINS	51.7	63.7	842	978	113	136	156
5.7 MINS	512	63.2	83.5	87.0	112	135	155
5.8 MINS	50.8	62.7	82.9	96.3	111	134	154
5.9 MINS	${ }^{\circ} 50.4$	62.2	82.3	85.6	110	133	153
6.0 MINS	50.0	61.7	81.6	84.9	110	132	152
6.2 MINS	49.3	60.7	80.4	93.5	108	130	150
6.4 MINS	48.5	59.8	79.2	922	107	829	148
6.6 MINS	47.8	58.9	78.1	90.9	105	127	846
6.8 MINS	47.1	58.0	77.0	89.6	104	125	144
7.0 MINS	46.4	57.2	75.9	88.4	102	124	143
7.2 MINS	45.8	56.4	74.9	87.3	101	122	141
7.4 MINS	45.2	55.6	739	86.1	100	121	139
7.6 MINS	44.5	54.8	729	85.0	99	119	138
7.8 MINS	44.0	54.1	719	84.0	87	118	136
8.0 MINS	43.4	53.4	71.0	82.9	96	117	135
8.2 MINS	42.8	52.7	70.1	81.9	85	115	133
B. 4 MINS	42.3	82.0	69.3	81.0	94	114	132
8.6 MINS	41.8	51.4	68.4	80.0	83	113	131
8.8 MINS	41.2	50.7	67.6	79.1	82	192	129
8.0 MINS	40.8	80.1	66.8	78.2	81	110	128
8.2 MINS	40.3	49.5	66.0	77.3	90	109	127
9.4 MINS	39.9	49.0	C5. 3	76.4	89	108	125
9.6 MINS	39.4	48.4	64.6	75.6	88	107	824
88 MINS	39.0	47.9	63.8	74.8	87	106	123
10.0 MINS	38.6	47.4	63.1	74.0	86	105	121
10.5 MINS	37.6	46.1	61.5	72.1	84	102	118
11.0 MINS	36.7	44.9	69.9	70.2	82	100	116
11.5 MINS	358	43.8	58.4	68.5	80	87	113
12.0 MINS	35.0	42.8	57.0	66.9	78	85	111
12.5 MINS	34.2	418	55.7	6. 5.4	76	93	108
13.0 MINS	33.4	40.8	54.4	64.0	75	81	106
13.5 MINS	32.7	29.9	53.3	62.6	73	89	104
14.0 MINS	32.0	39.1	52.1	61.3	72	87	102
14.5 MINS	31.4	38.3	51.0	60.0	70	86	100
15.0 MINS	30.8	37.5	50.0	58.8	69	84	98
16.0 MINS	29.6	36.1	48.1	56.6	66	81	94
170 MINS	28.6	34.8	46.3	54.6	64	78	81
88.0 MINJS	27.6	33.5	44.7	52.7	62	76	B8

School of Engineering
BEng (Hons) in Civil Engineering
Semester Two Examination 2018/2019
Ground and Water Studies II
Module No. CIE5005

School of Engineering
BEng (Hons) in Civil Engineering
Semester Two Examination 2018/2019
Ground and Water Studies II
Module No. CIE5005

SECTION B - Answer TWO questions

5. a) A quick 'UU' triaxial compression test is to be carried out on a cylindrical clay sample. Show how Mohr's stress circles will be used to characterise the clay behaviour. Ensure that you label all axes and key points on the Mohr's stress circles you sketch. Also sketch the cylinder of clay showing the direction of all key stresses involved on key planes.
b) A series of 'quick' unconsolidated undrained triaxial tests were conducted on a sample of clay with the results obtained being as follows:

Test Number	1	2	3
Cell Pressure $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	100	200	400
Vertical Stress at Failure $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	207	311	512

Using Figure Q5b and constructing Mohr's stress circles, determine the shear strength parameters of the soil sample. Using these values describe the clay soil being tested in geotechnical terms.
c) State three shear strength testing methods available for sands in the field and/or in the laboratory, briefly describing limitations and advantages for each
(4 marks)
d) Explain what you would expect to occur when carrying out a shear box test on a dense sand, using sketch diagrams, as appropriate, to explain why this behaviour is expected.

Total 20 marks

School of Engineering
BEng (Hons) in Civil Engineering
Semester Two Examination 2018/2019
Ground and Water Studies II
Module No. CIE5005
STUDENT ID : \qquad

Figure Q5b

PLEASE TURN THE PAGE....

School of Engineering
BEng (Hons) in Civil Engineering
Semester Two Examination 2018/2019
Ground and Water Studies II
Module No. CIE5005
6. a) A flexible foundation of length 3 m and breadth 2 m is to exert a uniform pressure of $120 \mathrm{kN} / \mathrm{m}^{2}$ on the surface of a 8 m layer of soil. Using Figure Q6a, determine the immediate settlement under the centre of the foundation if the elastic soil stiffness (E) is assumed to be $4 \mathrm{MN} / \mathrm{m}^{2}$.
b) A flexible foundation of length 3 m and breadth 2 m is to exert a uniform pressure of $120 \mathrm{kN} / \mathrm{m}^{2}$ on the surface of a layer of soil of assumed infinite thickness. Using Figure Q6b, determine the total stress at a depth of 5 m beneath a corner of the foundation.
c) The following results were obtained from an oedometer test on a specimen of saturated clay:

Applied Stress $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	0	25	50	100	200	400	800
Void Ratio	0.970	0.935	0.896	0.865	0.818	0.769	0.723

i) Determine the value of m_{v} for an effective stress range from $20 \mathrm{kN} / \mathrm{m}^{2}$ to $120 \mathrm{kN} / \mathrm{m}^{2}$.
ii) Calculate the consolidation settlement for a 4m thick layer of this clay, when the effective stress changes from $20 \mathrm{kN} / \mathrm{m}^{2}$ to $120 \mathrm{kN} / \mathrm{m}^{2}$.

School of Engineering
BEng (Hons) in Civil Engineering
Semester Two Examination 2018/2019
Ground and Water Studies II
Module No. CIE5005

Figure Q6a

School of Engineering
BEng (Hons) in Civil Engineering
Semester Two Examination 2018/2019
Ground and Water Studies II
Module No. CIE5005

Influence factor I

$\frac{z}{B}$

Fig Q6b

School of Engineering
BEng (Hons) in Civil Engineering
Semester Two Examination 2018/2019
Ground and Water Studies II
Module No. CIE5005
7. a) Explain the difference between 'compaction' and 'consolidation' using geotechnical reference to void ratio, pore water pressure, soil mineralogy and the most appropriate "stress state" (and any other parameters you deem relevant). You must provide a detailed description of the process of consolidation in your answer to obtain maximum marks.
(5 marks)
b) Using Figure Q7c determine the total stress, pore water pressure and effective stress at each strata change and at the location of the water table and hence plot a graph to illustrate their variation with depth from ground surface to a depth of 16 m below ground level. The water table is located at a depth of 5 m below ground level within a 9 m thick deposit of sandy gravel overlying 7 m of clay.
(15 marks)
Total 20 marks

PLEASE TURN THE PAGE....

School of Engineering
BEng (Hons) in Civil Engineering
Semester Two Examination 2018/2019
Ground and Water Studies II
Module No. CIE5005

NOTE: Assume that Unit Weight of Water $=9.81 \mathrm{kN} / \mathrm{m}^{3}$

Figure Q7c

PLEASE TURN THE PAGE....

School of Engineering
BEng (Hons) in Civil Engineering
Semester Two Examination 2018/2019
Ground and Water Studies II
Module No. CIE5005

Formulae

$\rho_{i}=\frac{q B}{E_{u}} . I$
$\Delta \mathrm{e}=\frac{\Delta \mathrm{H}}{\mathrm{H}} \cdot\left(1+\mathrm{e}_{\mathrm{o}}\right)$

$$
\sigma_{v}=\sigma_{v}^{\prime}+u
$$

$$
\sigma_{v}=q \mathrm{I}
$$

$$
\mathrm{R}=0.564 \mathrm{~S} \text { (square grid) }
$$

$$
(1-\mathrm{U})=\left(1-\mathrm{U}_{\mathrm{r}}\right)\left(1-\mathrm{U}_{\mathrm{v}}\right)
$$

$$
\mathrm{T}_{\mathrm{r}}=\left(\mathrm{c}_{\mathrm{h}} \mathrm{t}\right) /\left(4 \mathrm{R}^{2}\right)
$$

$$
\mathrm{T}_{\mathrm{v}}=\left(\mathrm{c}_{\mathrm{v}} \mathrm{t}\right) / \mathrm{d}^{2}
$$

$$
\mathrm{q}=\frac{\mathrm{kh} \cdot \mathrm{~N}_{\mathrm{f}}}{\mathrm{~N}_{\mathrm{d}}}
$$

$$
\mathrm{m}_{\mathrm{v}}=\frac{\Delta \mathrm{e}}{\Delta \sigma} \cdot \frac{(1)}{\left(1+\mathrm{e}_{\mathrm{o}}\right)}
$$

$\Delta H=m_{v} \Delta \sigma_{v} H$

School of Engineering
BEng (Hons) in Civil Engineering
Semester Two Examination 2018/2019
Ground and Water Studies II
Module No. CIE5005

TERMINOLOGY, SYMBOLS AND UNITS

Term	Symbol	$\frac{\text { Units }}{\mathrm{m}^{3}}$
Volume		kg
Mass	g	$9.81 \mathrm{~m} / \mathrm{sec}^{2}$
Gravity		$\mathrm{kN}=(\mathrm{kg} \times 9.81) / 1000$
Weight		

Total volume	V	m^{3}
Volume of air	V_{A}	m^{3}
Volume of water	V_{W}	$\mathrm{~m}^{3}$
Volume of voids	V_{V}	$\mathrm{~m}^{3}$
Volume of Solids	V_{s}	$\mathrm{~m}^{3}$

Mass of water	Mw	kg
Mass of solids	Ms	kg
Total mass	M	kN

Specific gravity	G_{s}	None
Density of water	ρ_{w}	$1000 \mathrm{~kg} / \mathrm{m}^{3}$
Unit weight of water	γ_{w}	$9.81 \mathrm{kN} / \mathrm{m}^{3}$
Void ratio	e	None
Degree of saturation	S_{r}	None
Moisture content	w	None
Porosity	n	None

Soil Bulk density	ρ_{b}	$\mathrm{kg} / \mathrm{m}^{3}$
Dry density	ρ_{d}	$\mathrm{kg} / \mathrm{m}^{3}$
Saturated density	$\rho_{\text {sat }}$	$\mathrm{kg} / \mathrm{m}^{3}$
Soil Bulk unit weight	γ_{b}	$\mathrm{kN} / \mathrm{m}^{3}$
Dry unit weight	γ_{d}	$\mathrm{kN} / \mathrm{m}^{3}$
Saturated unit weight	γ_{sat}	$\mathrm{kN} / \mathrm{m}^{3}$

School of Engineering
BEng (Hons) in Civil Engineering
Semester Two Examination 2018/2019
Ground and Water Studies II
Module No. CIE5005

DEFINITIONS

Term

Density of water, ρ_{w}

Unit weight of water, γ_{w}

Specific gravity, Gs

Water content, w

Void ratio, e

Degree of saturation, S_{r}	$\frac{\text { volume of water }}{\text { volume of voids }}$	$\frac{\mathrm{V}_{\mathrm{w}}}{\mathrm{V}_{\mathrm{v}}}$
Porosity, n	$\frac{\text { volume of voids }}{\text { total volume }}$	$\frac{\mathrm{V}_{\mathrm{v}}}{\mathrm{V}}$
Soil Bulk density, ρ_{b}	$\frac{\text { total mass }}{\text { total volume }}$	$\frac{\mathrm{M}}{\mathrm{V}}$

Dry density, ρ_{d}

Saturated density, $\rho_{\text {sat }}$

Soil Bulk unit weight, γ_{b}

Dry unit weight, γ_{d}

Saturated unit weight, $\gamma_{\text {sat }}$

Expression

mass of water	Mw
volume of water	$\overline{V_{w}}$
weight of water	\underline{W}
volume of water	V_{w}

$\frac{\text { density of solids }}{\text { density of water }} \quad \frac{\rho_{\mathrm{s}}}{\rho_{\mathrm{w}}}$
$\frac{\text { mass of water }}{\text { mass of solids }} \quad \frac{\mathrm{M}_{\mathrm{w}}}{\mathrm{M}_{\mathrm{s}}}$ mass of solids
Ms_{s}
$\frac{\text { volume of voids }}{\text { volume of solids }} \quad \frac{\mathrm{V}_{\mathrm{v}}}{\mathrm{V}_{\mathrm{s}}}$
$\frac{\text { volume of water }}{\text { volume of voids }} \quad \frac{\mathrm{V}_{\mathrm{w}}}{\mathrm{V}_{\mathrm{v}}}$
$\underset{\text { total volume }}{\text { volume of voids }} \quad \frac{\mathrm{V}_{\mathrm{v}}}{\mathrm{V}}$
total mass
total volume $\frac{\mathrm{M}}{\mathrm{V}}$
$\frac{\text { mass of solids }}{\text { total }} \quad \frac{\mathrm{M}_{\mathrm{s}}}{\mathrm{V}}$
total saturated mass total volume
$\frac{\text { weight of solids }}{\text { total volume }} \quad \frac{\mathrm{W}_{\mathrm{s}}}{\mathrm{V}}$
$\frac{\text { total saturated weight }}{\text { total volume }} \quad \frac{\mathrm{W}}{\mathrm{V}}$

Please turn the page

School of Engineering
BEng (Hons) in Civil Engineering
Semester Two Examination 2018/2019
Ground and Water Studies II
Module No. CIE5005

BASIC PROPERTIES Formulae:

Void space relationship from soil model $w G_{s}=S_{r} e$

Bulk Density

$$
\begin{aligned}
\rho_{\mathrm{b}} & =\frac{\left(\mathrm{G}_{\mathrm{s}}+\mathrm{Sr}_{\mathrm{r}} \mathrm{e}\right) \rho_{\mathrm{w}}}{1+\mathrm{e}} \\
\rho_{\mathrm{b}} & =\frac{\rho_{\mathrm{w}} \mathrm{G}_{\mathrm{s}}(1+\mathrm{w})}{1+\mathrm{e}}
\end{aligned}
$$

Dry Density

$$
\rho_{\mathrm{d}}=\frac{\rho \mathrm{w} \mathrm{G}_{\mathrm{s}}}{1+\mathrm{e}}
$$

$$
\rho_{\mathrm{d}}=\frac{\rho_{\mathrm{b}}}{1+\mathrm{w}}
$$

Porosity

$$
\mathrm{n}=\frac{\mathrm{e}}{1+\mathrm{e}}
$$

