UNIVERSITY OF BOLTON

WESTERN INTERNATIONAL COLLEGE FZE

BENG (HONS) CIVIL ENGINEERING

SEMESTER TWO EXAMINATION 2018/2019

MATHEMATICS AND STRUCTURAL DESIGN

MODULE NO: CIE4012

Date: Wednesday 29th May 2019

Time: 10.00am - 1.00pm

INSTRUCTIONS TO CANDIDATES:

There are FIVE questions on this paper.

Answer ALL questions.

Answer Section A and Section B questions in separate answer books.

Marks for parts of questions are shown in the brackets.

This examination paper carries a total of 100 marks.

Formula sheet for Section B is attached on Page 6 of this paper.

The necessary design aid data for and formula sheet for Section A will be provided at the examination hall.

All working must be shown. A numerical solution to a question obtained by programming an electronic calculator will not be accepted.

SECTION A: STRUCTURAL DESIGN

Question 1: Steel Beam Design (General Aid for Design provided on Page 3)

Figure 1 shows a plan view of the first floor of an office building. The office building has a ground floor and first floor with identical layouts. For the steel beam **CD** along the **grid line 3**,

- a. Prepare a set of manual design calculations to choose a beam size of minimum weight and most economical. (9 marks)
- b. Sketch the cross-section of the chosen steel beam section (5 marks)
- c. Show the suitability of the chosen beam for bending, compression, shear strength, web shear buckling and combined bending and shear check.

(13 marks)

d. Assume beam **CD** to be simply supported and calculate the vertical deflection at mid-span of the beam **CD** to check whether it is satisfactory.

(3 marks)

Total 30 marks

Question 2: Steel Column Design (General Aid for Design provided on Page 3)

For the plan view shown in **Figure 1** provided on **page 3**, Prepare a set of manual design calculations for the steel column **D** along the **grid line 2** at the ground floor if the floor to floor height is 3.2m.

a. Calculate the load acting on Column D. Ignore the self-weight of columns.

- (10 marks) b. Choose a suitable steel section for the column D which must be economical. (4 marks)
- c. Design the column for buckling and compression resistance

(6marks)

Total 20 marks

Please turn the page for Figure 1 and the General Aid for Design

Figure 1: Plan of the first floor of an office building

General Aid for Design

- i. The thickness of each slab is 200mm(with a unit weight of 25 kN/m³) with 50mm thick screed(with a unit weight of 24kN/m³) over it
- ii. The slabs are subjected to a live load of 6.0kN/m² each
- iii. Consider the loadings on the slabs to be the same on each floor
- iv. The self-weight of the steel beams are 1.5kN/m each
- v. Assume the column is carrying axial force only and pinned at both ends.
- vi. The Young's modulus of steel should be taken as 210000N/mm²
- vii. Steel grade of S275 is considered for the whole structure
- viii. Suggested limit for vertical deflection in steel beams here is L/200

END OF SECTION A

Please turn the page for SECTION B

SECTION B: MATHEMATICS

Question 3

Using suitable integration techniques, determine the following indefinite integrals, simplifying all the solutions.

a.
$$y = \int \frac{9}{(x-1)(x+2)^2} dx$$
 (8 marks)
b.
$$y = \int e^{5x} \sin 3x dx$$
 (6 marks)
c.
$$y = \int x^2 \sin x dx$$
 (6 marks)
d.
$$y = \int \frac{(x^2 - 1)(x - 1)}{x(x - 1)} dx$$
 (5 marks)

Total 25 marks

Question 4

a. The bending moment 'M' of a beam is given by

$$\frac{dM}{dx} = -w(l-x)$$

Where 'w'the uniformly distributed load in kN/m of the beam, 'x' is the distance of the support from a section X-X as shown in Figure 4.a. Determine

(5 marks)

Question 4 continued over the page

Please Turn the Page

- b. A differential equation relating the difference in tension 'T', pulley contact angle ' θ ' and coefficient of friction ' μ ' is given as $\frac{dT}{d\theta} = \mu T$. Coefficient of friction is given as $\mu = 0.30$. Slipping starts when $\theta = 0$ and T=150N.
 - i. Determine the tension at the point of slipping when $\theta = 2radians$
 - ii. Determine the value of θ when T is 300N

(7 marks)

c. Find the partial derivatives of $f(x, y, z) = xyz^2 + 3xy - z$ with respect to x, y and z

(6 marks)

d. Sketch the curves $y=x^2 + 3$ and y = 7 - 3x and determine the area enclosed by them.

(7 marks)

Total 25 marks

END OF SECTION B

END OF QUESTIONS

Formula sheet over the page

Formula Sheet

f(x)	$\int f(x) dx$ all '+c'
2x	x ²
х	1/2 X ²
k (constant)	k x
X ⁿ	<u>1</u> x ⁿ⁺¹
	n + 1
<u>1</u>	ln x
х	
e ^x	e ^x
e ^{kx}	e ^x <u>e^{kx}</u>
	k
sin x	- cos x
COS X	sin x
sin kx	- <u>cos kx</u>
	k
cos kx	<u>sin kx</u>
	k

END OF PAPER