UNIVERSITY OF BOLTON

WESTERN INTERNATIONAL COLLEGE FZE BENG (HONS) CIVIL ENGINEERING

SEMESTER TWO EXAMINATION 2018/2019

MATHEMATICS AND STRUCTURAL DESIGN
MODULE NO: CIE4012

Date: Wednesday 29 ${ }^{\text {th }}$ May 2019
Time: 10.00am - 1.00pm

INSTRUCTIONS TO CANDIDATES: There are FIVE questions on this paper.
Answer ALL questions.
Answer Section A and Section B questions in separate answer books.

Marks for parts of questions are shown in the brackets.

This examination paper carries a total of 100 marks.

Formula sheet for Section B is attached on Page 6 of this paper.

The necessary design aid data for and formula sheet for Section A will be provided at the examination hall.

All working must be shown. A numerical solution to a question obtained by programming an electronic calculator will not be accepted.

University of Bolton
Western International College FZE
BEng (Hons) Civil Engineering
Semester 2 Examination 2018/2019
Mathematics and Structural Design
Module No. CIE4012

SECTION A: STRUCTURAL DESIGN

Question 1: Steel Beam Design
 (General Aid for Design provided on Page 3)

Figure 1 shows a plan view of the first floor of an office building. The office building has a ground floor and first floor with identical layouts. For the steel beam CD along the grid line 3,
a. Prepare a set of manual design calculations to choose a beam size of minimum weight and most economical.
(9 marks)
b. Sketch the cross-section of the chosen steel beam section
(5 marks)
c. Show the suitability of the chosen beam for bending, compression, shear strength, web shear buckling and combined bending and shear check.
(13 marks)
d. Assume beam CD to be simply supported and calculate the vertical deflection at mid-span of the beam CD to check whether it is satisfactory.
(3 marks)
Total 30 marks

Question 2: Steel Column Design
 (General Aid for Design provided on Page 3)

For the plan view shown in Figure 1 provided on page 3, Prepare a set of manual design calculations for the steel column \mathbf{D} along the grid line 2 at the ground floor if the floor to floor height is 3.2 m .
a. Calculate the load acting on Column D. Ignore the self-weight of columns.
(10 marks)
b. Choose a suitable steel section for the column D which must be economical.
c. Design the column for buckling and compression resistance

University of Bolton
Western International College FZE
BEng (Hons) Civil Engineering
Semester 2 Examination 2018/2019
Mathematics and Structural Design
Module No. CIE4012
Please turn the page

Figure 1: Plan of the first floor of an office building

General Aid for Design

i. The thickness of each slab is 200 mm (with a unit weight of $25 \mathrm{kN} / \mathrm{m}^{3}$) with 50 mm thick screed(with a unit weight of $24 \mathrm{kN} / \mathrm{m}^{3}$) over it
ii. The slabs are subjected to a live load of $6.0 \mathrm{kN} / \mathrm{m}^{2}$ each
iii. Consider the loadings on the slabs to be the same on each floor
iv. The self-weight of the steel beams are $1.5 \mathrm{kN} / \mathrm{m}$ each
v. Assume the column is carrying axial force only and pinned at both ends.
vi. The Young's modulus of steel should be taken as $210000 \mathrm{~N} / \mathrm{mm}^{2}$
vii. Steel grade of S275 is considered for the whole structure
viii. Suggested limit for vertical deflection in steel beams here is L/200

University of Bolton
Western International College FZE
BEng (Hons) Civil Engineering
Semester 2 Examination 2018/2019
Mathematics and Structural Design
Module No. CIE4012
Please turn the page for SECTION B

SECTION B: MATHEMATICS

Question 3

Using suitable integration techniques, determine the following indefinite integrals, simplifying all the solutions.
a. $\quad y=\int \frac{9}{(x-1)(x+2)^{2}} d x$
(8 marks)
b. $y=\int e^{5 x} \sin 3 x . d x$
(6 marks)
c. $y=\int x^{2} \sin x . d x$
(6 marks)
d. $y=\int \frac{\left(x^{2}-1\right)(x-1)}{x(x-1)} . d x$
(5 marks)

Total 25 marks

Question 4

a. The bending moment ' M ' of a beam is given by

$$
\frac{d M}{d x}=-w(l-x)
$$

Where ' w 'the uniformly distributed load in kN / m of the beam, ' x ' is the distance of the support from a section $\mathrm{X}-\mathrm{X}$ as shown in Figure 4.a. Determine ' M ' in terms of ' x ' if $M=\frac{1}{2} w l^{2}$ when ' x ' $=0$.

Figure 4.a- Simply Supported beam carrying UDL

University of Bolton
Western International College FZE
BEng (Hons) Civil Engineering
Semester 2 Examination 2018/2019
Mathematics and Structural Design
Module No. CIE4012

Please Turn the Page

b. A differential equation relating the difference in tension ' T ', pulley contact angle ' θ ' and coefficient of friction ' μ ' is given as $\frac{d T}{d \theta}=\mu T$. Coefficient of friction is given as $\mu=0.30$. Slipping starts when $\theta=0$ and $\mathrm{T}=150 \mathrm{~N}$.
i. Determine the tension at the point of slipping when $\theta=2$ radians
ii. Determine the value of θ when T is 300 N
c. Find the partial derivatives of $f(x, y, z)=x y z^{2}+3 x y-z$ with respect to x, y and z
d. Sketch the curves $y=x^{2}+3$ and $y=7-3 x$ and determine the area enclosed by them.

END OF SECTION B

END OF QUESTIONS

Formula sheet over the page

University of Bolton
Western International College FZE
BEng (Hons) Civil Engineering
Semester 2 Examination 2018/2019
Mathematics and Structural Design
Module No. CIE4012
Formula Sheet

f(x)	$\int f(x) d x$ all '+c'
2 x	x^{2}
X	$1 / 2 x^{2}$
k (constant)	kx
x^{n}	$\frac{1}{n+1} x^{n+1}$
$\frac{1}{x}$	$\ln x$
e^{x}	e^{x}
$e^{k x}$	$\frac{\mathrm{e}^{\mathrm{kx}}}{\mathrm{k}}$
$\sin x$	$-\cos x$
$\cos x$	$\sin x$
$\sin \mathrm{kx}$	$\frac{-\cos k x}{k}$
cos kx	$\frac{\sin k x}{k}$

END OF PAPER

