## **UNIVERSITY OF BOLTON**

# **ENGINEERING, SPORTS AND SCIENCES**

## **BEng (HONS) IN CIVIL ENGINEERING**

## SEMESTER TWO EXAMINATION 2018/2019

# **GROUND AND WATER STUDIES**

## MODULE NO: CIE4009

Date: Monday 20<sup>th</sup> May 2019

Time: 10:00 - 13:00

**INSTRUCTIONS TO CANDIDATES:** 

There are <u>TWO</u> Sections; A and B.

Answer Section A in ONE Answer Booklet, and Section B in the other.

Section A : Q1 to Q3 (Answer <u>TWO</u> Questions from three).

Section B : Q4 to Q7 (Answer <u>THREE</u> Questions from four).

Formulae and Definitions are provided.

Lined Graph Paper and Supplementary Answer Sheets are available for your use.

Ensure that you write your Candidate Number or Desk Number on each Figure, Supplementary Sheet or Sheet of Graph Paper you use to answer the selected questions.

All questions carry equal marks.

Marks for parts of questions are shown in brackets.

## SECTION A (Answer TWO Questions from three)

1a)

- i. With the aid of sketches, explain what is meant by laminar and turbulent flow (4 marks)
- ii. Define the 3 components of Bernoulli's equation.

(6 marks)

b) A Pitch Fibre clay pipeline in normal condition delivers 4235litres/minute over a distance of 1.2km from a reservoir to a water distribution network. The water level in the reservoir is 100m AOD and the ground level at the distribution network 65m AOD. If the water main pressure is 210kPa determine the pipeline pipe diameter (HRS tables provided).

(10 marks)

Total 20 marks

2a) With the aid of sketches, explain what is meant by 'minor energy losses' occur in pipelines.

## (6 marks)

b) Two tanks in a water treatment plant are connected by a pipeline which is 150mm in diameter for 11m and then changes abruptly to 225 mm in diameter for the remaining 18m of its length.

There are two 45° bends (each of  $K_{L} = 0.5$ ) on the 150 mm diameter pipeline. The flowrate between the tanks is 21litres/sec. The Darcy friction coefficient  $\lambda$  is 0.024 for the 225 mm pipeline and 0.027 for the 150 mm pipeline. Taking account of all energy losses, determine the difference between the water levels in the tanks.

(14 marks)

Total 20 marks

3a) With the aid of sketches, explain how hydrostatic forces are determined.

(6 marks)

b) Water is drained from a storage tank through a 0.6m diameter circular flap valve shown in Figure Q3.

i) Determine the force on the gate when the water level is 0.4m above the hinge.

(6 marks)

ii) If the flap valve has a mass of 80kg, determine whether it remains closed. (8 marks)



|                                                                     | Suita | ble values of K, ( | mm)  |  |
|---------------------------------------------------------------------|-------|--------------------|------|--|
| Classification (assumed clean and new unless other-<br>wise stated) | Good  | Normal             | Poor |  |
| Smooth materials                                                    |       |                    |      |  |
| Drawn non-ferrous nines of aluminium brass con-                     |       |                    |      |  |
| per lead etc. and non-metallic pipes of Alkathene.                  |       |                    |      |  |
| glass, perspex etc                                                  |       | 0.003              |      |  |
|                                                                     |       |                    |      |  |
| Asbestos-cement                                                     | 0.015 | 0.03               |      |  |
| Metal                                                               |       |                    |      |  |
| Spun bitumen or concrete lined                                      |       | 0.03               |      |  |
| Wrought iron                                                        | 0.03  | 0.06               | 0.15 |  |
| Rusty wrought iron                                                  | 0.15  | 0.6                | 3.0  |  |
| Lincosted steel                                                     | 0.015 | 0.03               | 0.06 |  |
| Costed steel                                                        | 0.03  | 0.06               | 0.15 |  |
| Columnised iron, control east iron                                  | 0.05  | 0.15               | 0.15 |  |
| Galvanised from, coaled cast from                                   | 0.00  | 0.15               | 0.5  |  |
| Uncoated cast from                                                  | 0.15  | 0.3                | 0.0  |  |
| Tate relined pipes                                                  | 0.15  | 0.5                | 0.0  |  |
| Old tuberculated water mains with the following                     |       |                    |      |  |
| degrees of attack:                                                  | 0.4   |                    | 2.0  |  |
| ght                                                                 | 0.6   | 1.5                | 3.0  |  |
| Moderate                                                            | 1.5   | 3.0                | 6.0  |  |
| Appreciable                                                         | 6.0   | 15                 | 30   |  |
| Severe                                                              | 15    | 30                 | 60   |  |
| (Good: Up to 20 years use, Normal: 40 to 50                         |       |                    |      |  |
| years use, Poor: 80 to 100 years use)                               |       |                    |      |  |
| Wood                                                                |       |                    |      |  |
| Wood stave pipes, planed plank conduits                             | 0.3   | 0.6                | 1.5  |  |
|                                                                     |       |                    |      |  |
| Concrete                                                            |       |                    |      |  |
| Precast concrete pipes with 'O' ring joints                         | 0.06  | 0.15               | 0.6  |  |
| Spun precast concrete pipes with 'O' ring joints                    | 0.06  | 0.15               | 0.3  |  |
| Monolithic construction against steel forms                         | 0.3   | 0.6                | 1.5  |  |
| Monolithic construction against rough forms                         | 0.6   | 1.5                |      |  |
| Claumana                                                            |       |                    |      |  |
| Ciayware                                                            |       |                    |      |  |
| G ed or unglazed pipe:                                              | 0.02  | 0.00               | 0.15 |  |
| with sleeve joints                                                  | 0.03  | 0.06               | 0.15 |  |
| With spigot and socket joints and 'O' ring seals                    |       | 0.02               |      |  |
| - dia < 150mm                                                       | _     | 0.03               |      |  |
| With spigot and socket joints and 'O' ring seals                    |       | 0.00               |      |  |
| - dia > 150mm                                                       |       | 0.06               | _    |  |
| Pitch fibre (lower value refers to full bore flow)                  | 0.003 | 0.03               |      |  |
| Glass fibre                                                         | -     | 0.06               | _    |  |
| uPVC                                                                |       |                    |      |  |
| With chemically cemented joints                                     |       | 0.03               |      |  |
| With spigot and socket joints 'O' ring seals at 6 to 9              |       |                    |      |  |
| metre intervals                                                     | —     | 0.06               | _    |  |

| 3<br>continued    | ks = 0.<br>i = 0.00<br>ie hydr | 030 mm<br>4 to 0·1<br>aulic gra | adient =       |                | Water (or<br>full bore<br>velocitie | r sewage<br>conditi<br>es in ma | ) at 15° (<br>ons.<br>/s | 2               |                 |                 |                  |                  |
|-------------------|--------------------------------|---------------------------------|----------------|----------------|-------------------------------------|---------------------------------|--------------------------|-----------------|-----------------|-----------------|------------------|------------------|
|                   | 1 in 250                       | 0 to 1 in                       | 10             |                | discharg                            | jes in l/s                      | 5                        |                 |                 |                 |                  |                  |
|                   |                                | 12                              |                |                |                                     |                                 |                          |                 | 11 (J           |                 |                  |                  |
| Gradient          | <b>Pipe d</b>                  | 1 <b>iameters</b><br>75         | in mm :<br>80  | 100            | 125                                 | 150                             | 175                      | 200             | 225             | 250             | 275              | 300              |
| 0.00400           | 0.372                          | 0.494                           | 0.516          | 0.601          | 0.699                               | 0.790                           | 0.874                    | 0.955           | 1,031           | 1.104           | 1.175            | 1.243            |
| 1/ 250            |                                | 2.181                           | 2.595          | 4.722          | 8.578                               | 13.952                          | 21.033                   | 29.995          | 41.003          | 54.216          | 69.782           | 87.847           |
| 0.00420           | 0.382                          | 0.507                           | 0.530 2.666    | 0.618<br>4.851 | 0.718<br>8.811                      | 0.811<br>14.329                 | 0.898                    | 0.980<br>30.798 | 1.059<br>42.099 | 1.134<br>55.661 | 1.206<br>71.639  | 1.276<br>90.179  |
| 0.00440           | 0.392                          | 0.521<br>2.300                  | 0.544<br>2.736 | 0.634<br>4.977 | 0.736<br>9.038                      | 0.832<br>14.697                 | 0.921<br>22.151          | 1.005<br>31.584 | 1.086<br>43.170 | 1.163<br>57.074 | 1.237<br>73.454  | 1.308<br>92.460  |
| 0.00460           | 0.402                          | 0.534<br>2.357                  | 0.558<br>2.804 | 0.649<br>5.100 | 0.755<br>9.260                      | 0.852                           | 0.943<br>22.692          | 1.030<br>32.353 | 1.112<br>44.219 | 1.191<br>58.457 | 1.267<br>75.230  | 1.340<br>94.692  |
| 0.00480<br>1/ 208 | 0.412                          | 0.546<br>2.414                  | 0.571<br>2.870 | 0.665<br>5.221 | 0.772<br>9.478                      | 0.872<br>15.410                 | 0.965 23.222             | 1.054<br>33.107 | 1.138<br>45.246 | 1.218<br>59.812 | 1.296<br>76.970  | 1.371<br>96.878  |
| 0.00500           | 0.421                          | 0.559                           | 0.584          | 0.680          | 0.790                               | 0.892                           | 0.987                    | 1.077           | 1.163           | 1.246           | 1.325            | 1.401            |
| 1/ 200            | 0.828                          | 2.469                           | 2.936          | 5.339          | 9.692                               | 15.756                          | 23.742                   | 33.845          | 46.253          | 61.140          | 78.675           | 99.020           |
| 0.00550<br>1/ 182 | 0.445<br>0.873                 | 0.589<br>2.602                  | 0.616<br>3.095 | 0.716<br>5.626 | 0.832<br>10.210                     | 0.939                           | 1.039 24.999             | 1.134<br>35.633 | 1.225<br>48.689 | 1.311<br>64.353 | 1.394<br>82.802  | 1.474<br>104.205 |
| 0.00600<br>1/ 167 | 0.467<br>0.916                 | 0.618 2.731                     | 0.646<br>3.247 | 0.751<br>5.901 | 0.872<br>10.706                     | 0.984<br>17.397                 | 1.089 26.204             | 1.189<br>37.345 | 1.283<br>51.023 | 1.374<br>67.431 | 1.461<br>86.753  | 1.544<br>109.169 |
| 0.00650           | 0.488                          | 0.646                           | 0.675          | 0.785          | 0.911                               | 1.028                           | 1.138                    | 1.241           | 1.340           | 1.434           | 1.525            | 1.612            |
| 1/ 154            | 0.958                          | 2.854                           | 3.393          | 6.165          | 11.183                              | 18.168                          | 27.363                   | 38.991          | 53.265          | 70.388          | 90.550           | 113.938          |
| 0.00700           | 0.509                          | 0.673                           | 0.703 3.534    | 0.817          | 0.949                               | 1.070                           | 1.184                    | 1.292           | 1.394           | 1.492           | 1.586            | 1.677            |
| 1/ 143            | 0.999                          | 2.973                           |                | 6.420          | 11.643                              | 18.913                          | 28.479                   | 40.578          | 55.427          | 73.238          | 94.210           | 118.534          |
| 0.00750           | 0.529                          | 0.699                           | 0.730 3.671    | 0.849          | 0.985                               | 1.111                           | 1.229                    | 1.340           | 1.447           | 1.548           | 1.646            | 1.740            |
| 1/ 133            | 1.038                          | 3.088                           |                | 6.667          | 12.088                              | 19.632                          | 29.559                   | 42.111          | 57.517          | 75.992          | 97.746           | 122.975          |
| 0.00800<br>1/ 125 | 0.548                          | 0.724<br>3.200                  | 0.757 3.803    | 0.879<br>6.906 | 1.020<br>12.519                     | 1.150<br>20.329                 | 1.272<br>30.605          | 1.388<br>43.596 | 1.497<br>59.540 | 1.602<br>78.660 | 1.703<br>101.170 | 1.801<br>127.276 |
| 0.00850           | 0.567                          | 0.749                           | 0.782          | 0.909          | 1.054                               | 1.189                           | 1.315                    | 1.434           | 1.547           | 1.655           | 1.759            | 1.860            |
| 1/ 118            | 1.113                          | 3.308                           | 3.932          | 7.138          | 12.938                              | 21.006                          | 31.620                   | 45.038          | 61.504          | 81.249          | 104.493          | 131.449          |
| 0.00900<br>1/ 111 | 0.585                          | 0.773 3.413                     | 0.807<br>4.057 | 0.938<br>7.364 | 1.087<br>13.345                     | 1.226<br>21.664                 | 1.356<br>32.607          | 1.478<br>46.440 | 1.595<br>63.414 | 1.706<br>83.766 | 1.814<br>107.724 | 1.917<br>135.506 |
| 0.00950           | 0.603                          | 0.796                           | 0.831          | 0.966          | 1.120                               | 1.262                           | 1. <b>396</b>            | 1.522           | 1.642           | 1.756           | 1.867            | 1.973            |
| 1/ 105            |                                | 3.516                           | 4.179          | 7.584          | 13.741                              | 22.305                          | 33.568                   | 47.805          | 65.273          | 86.217          | 110.869          | 139.455          |
| 0.01000           | 0.620                          | 0.819                           | 0.855          | 0.993          | <b>1.151</b>                        | 1.298                           | 1.435                    | 1.564           | 1.687           | 1.805           | 1.918            | 2.027            |
| 1/ 100            |                                | 3.616                           | 4.298          | 7.799          | 14.128                              | 22.930                          | 34.506                   | 49.136          | 67.086          | 88.606          | 113.936          | 143.306          |
| 0.01100           | 0.654                          | 0.862                           | 0.901          | 1.046          | 1.212                               | 1.366                           | 1.510                    | 1.646           | 1.775           | <b>1.899</b>    | 2.018            | 2.132            |
| 1/ 91             | 1.284                          | 3.810                           | 4.528          | 8.214          | 14.875                              | 24.137                          | 36.316                   | 51.706          | 70.586          | 93.218          | 119.855          | 150.737          |
| 0.01200<br>1/ 83  | 0.686                          | 0.904<br>3.996                  | 0.945<br>4.748 | 1.096<br>8.611 | 1.270<br>15.590                     | 1.431<br>25.293                 | 1.582 38.049             | 1.724<br>54.166 | 1.860<br>73.935 | 1.989<br>97.632 | 2.113<br>125.519 | 2.233<br>157.849 |
| 0.01300           | 0.717                          | 0.945                           | 0.987          | 1.145          | 1.326                               | 1.494                           | 1.651                    | 1.799           | 1.940           | 2.075           | 2.205            | 2.330            |
| 1/ 77             | 1.408                          | 4.174                           | 4.960          | 8.993          | 16.278                              | 26.403                          | 39.714                   | 56.529          | 77.153          | 101.872         | 130.959          | 164.678          |
| 0.01400           | 0.747                          | 0.984                           | 1.027          | <b>1.192</b>   | 1.380                               | 1.555                           | 1.718                    | 1.872           | 2.018           | 2.159           | 2.293            | 2.423            |
|                   | 1.467                          | 4.346                           | 5.164          | 9.361          | 16.940                              | 27.474                          | 41.318                   | 58.807          | 80.254          | 105.957         | 136.201          | 171.258          |
| 0.01500           | 0.776                          | 1.022                           | 1.067          | 1.237          | 1.433                               | 1.613                           | 1.782                    | 1.942           | <b>2.094</b>    | 2.239           | 2.378            | 2.513            |
| 1/ 67             |                                | 4.513                           | 5.361          | 9.717          | 17.581                              | 28.508                          | 42.869                   | 61.007          | 83.249          | 109.903         | 141.264          | 177.613          |
| 0.01600           | 0.804                          | 1.058                           | 1.105          | 1.281          | <b>1.483</b>                        | 1.670                           | 1.845                    | 2.010           | 2.167           | 2.317           | <b>2.461</b>     | 2.600            |
| 1/ 62             | 1.578                          | 4.674                           | 5.553          | 10.061         | 18.201                              | 29.510                          | 44.370                   | 63.138          | 86.149          | 113.724         | 146.165          | 183.766          |
| 0.01700           | 0.831                          | 1.093                           | 1.142 5.738    | 1.324          | 1.532                               | 1.725                           | 1.905                    | 2.076           | 2.237           | 2.392           | <b>2.541</b>     | <b>2.684</b>     |
| 1/ 59             | 1.632                          | 4.831                           |                | 10.396         | 18.804                              | 30.483                          | 45.827                   | 65.205          | 88.963          | 117.430         | 150.920          | 189.734          |
| 0.01800           | 0.858                          | 1.128                           | 1.178          | 1.365          | 1.580                               | <b>1.778</b>                    | <b>1.964</b>             | <b>2.140</b>    | 2.306           | <b>2.466</b>    | <b>2.619</b>     | <b>2.766</b>     |
| 1/ 56             | 1.684                          | 4.983                           | 5.919          | 10.721         | 19.389                              | 31.428                          | 47.243                   | 67.214          | 91.698          | 121.033         | 155.541          | 195.534          |
| 0.01900           | 0.883                          | <b>1.162</b>                    | 1.213          | <b>1.405</b>   | <b>1.626</b>                        | <b>1.831</b>                    | <b>2.021</b>             | <b>2.202</b>    | <b>2.373</b>    | <b>2.537</b>    | 2.694            | <b>2.846</b>     |
| 1/ 53             | 1.735                          | 5.131                           | 6.095          | 11.038         | 19.959                              | 32.348                          | 48.622                   | 69.171          | 94.360          | 124.539         | 160.039          | 201.179          |
|                   | Coeffi                         | cient fo                        | r part-        | full pip       | )es:                                |                                 |                          | já.             | -577 57         |                 |                  |                  |
|                   | 35                             | 50                              | 60             | 70             | 90                                  | 110                             | 130                      | 150             | 150             | 200             | 200              | 200              |

| 7                 | ks =<br>i = 0 · | 0·600mm<br>004 to 0·1    |                |                | Water(o<br>full bor   | r sewage<br>e condit              | ) at 15°<br>ions. | С               |                 |                 |                  |                   |
|-------------------|-----------------|--------------------------|----------------|----------------|-----------------------|-----------------------------------|-------------------|-----------------|-----------------|-----------------|------------------|-------------------|
| continued         | ie hy<br>1 in 2 | draulic gr<br>50 to 1 in | adient :<br>10 | = (            | velociti<br>Jischarge | <mark>es in m</mark><br>es in l/s | /s                |                 |                 |                 |                  |                   |
| Gradient          | Pipe<br>50      | diameters<br>75          | in mm :<br>80  | 100            | 125                   | 150                               | 175               | 200             | 225             | 250             | 275              | 300               |
| 0.00400           | 0.298<br>0.586  | 0.395                    | 0.413          | 0.480 3.773    | 0.558                 | 0.629                             | 0.697             | 0.760<br>23.882 | 0.821           | 0.879<br>43.131 | 0.934            | 0.988             |
| 0.00420           | 0.306           | 0.405<br>1.790           | 0.423          | 0.493<br>3.868 | 0.572                 | 0.645                             | 0.714             | 0.779           | 0.841<br>33.451 | 0.901           | 0.958<br>56.888  | 1.013<br>71.595   |
| 0.00440           | 0.313           | 0.415<br>1.834           | 0.434<br>2.180 | 0.504<br>3.962 | 0.586                 | 0.661                             | 0.731             | 0.798           | 0.861<br>34.251 | 0.922           | 0.981<br>58.246  | 1.037<br>73.303   |
| 0.00460           | 0.321<br>0.630  | 0.425<br>1.876           | 0.444 2.231    | 0.516          | 0.599                 | 0.676                             | 0.748             | 0.816           | 0.881<br>35.033 | 0.943<br>46.301 | 1.003<br>59.574  | 1.061<br>74.973   |
| 0.00480           | 0.328           | 0.434<br>1.918           | 0.454 2.280    | 0.527<br>4.142 | 0.612                 | 0.691                             | 0.764<br>18.386   | 0.834 26.202    | 0.900           | 0.964<br>47.312 | 1.025<br>60.873  | 1.084<br>76.606   |
| 0.00500           | 0.335<br>0.658  | 0.443<br>1.958           | 0.463 2.328    | 0.539<br>4.230 | 0.625                 | 0.705                             | 0.780<br>18.772   | 0.852           | 0.919<br>36.548 | 0.984<br>48.301 | 1.046<br>62.145  | 1.106<br>78.206   |
| 0.00550           | 0.352           | 0.466<br>2.057           | 0.486          | 0.566          | 0.656<br>8.054        | 0.740                             | 0.819             | 0.894<br>28.078 | 0.965<br>38.358 | 1.033<br>50.692 | 1.098<br>65.218  | 1.161<br>82.071   |
| 0.00600           | 0.368           | 0.487<br>2.151           | 0.509<br>2.557 | 0.591<br>4.644 | 0.686<br>8.420        | 0.774                             | 0.856 20.595      | 0.934<br>29.345 | 1.008<br>40.088 | 1.079<br>52.976 | 1.147<br>68.155  | 1.213 85.765      |
| 0.00650           | 0.384           | 0.507<br>2.241           | 0.530<br>2.664 | 0.616<br>4.837 | 0.715<br>8.770        | 0.806                             | 0.892<br>21.449   | 0.973           | 1.050<br>41.748 | 1.124<br>55.167 | 1.195<br>70.972  | 1.263<br>89.307   |
| 0.00700<br>1/ 143 | 0.399           | 0.527<br>2.328           | 0.550 2.767    | 0.640<br>5.024 | 0.742 9.108           | 0.837<br>14.791                   | 0.926 22.271      | 1.010<br>31.731 | 1.090<br>43.344 | 1.167<br>57.276 | 1.241<br>73.682  | 1.312<br>92.716   |
| 0.00750           | 0.413           | 0.546<br>2.411           | 0.570<br>2.866 | 0.663<br>5.204 | 0.769<br>9.433        | 0.867                             | 0.959<br>23.064   | 1.046<br>32.860 | 1.129<br>44.885 | 1.208<br>59.310 | 1.285<br>76.298  | 1.358<br>96.005   |
| 0.00800           | 0.427<br>0.838  | 0.564<br>2.492           | 0.589<br>2.962 | 0.685          | 0.794<br>9.748        | 0.896                             | 0.991 23.832      | 1.081<br>33.952 | 1.166<br>46.375 | 1.248<br>61.278 | 1.327<br>78.828  | 1.403<br>99.187   |
| 0.00850           | 0.441           | 0.582                    | 0.608          | 0.706<br>5.547 | 0.819                 | 0.924                             | 1.022 24.576      | 1.114<br>35.011 | 1.203<br>47.820 | 1.287<br>63.185 | 1.368<br>81.280  | 1.447<br>102.270  |
| 0.00900           | 0.454<br>0.891  | 0.599<br>2.647           | 0.626<br>3.146 | 0.727<br>5.711 | 0.843<br>10.349       | 0.951                             | 1.052<br>25.298   | 1.147<br>36.038 | 1.238<br>49.223 | 1.325<br>65.037 | 1.409<br>83.660  | 1.489<br>105.264  |
| 0.00950           | 0.466<br>0.916  | 0.616<br>2.721           | 0.643<br>3.234 | 0.747<br>5.870 | 0.867                 | 0.977                             | 1.081<br>26.000   | 1.179<br>37.038 | 1.272<br>50.587 | 1.362<br>66.838 | 1.448<br>85.976  | 1.530<br>108.176  |
| 0.01000<br>1/ 100 | 0.479<br>0.940  | 0.632<br>2.793           | 0.660<br>3.320 | 0.767          | 0.890<br>10.918       | 1.003<br>17.726                   | 1.109<br>26.684   | 1.210<br>38.012 | 1.306<br>51.915 | 1.397<br>68.593 | 1.485<br>88.231  | 1.571<br>111.013  |
| 0.01100           | 0.503<br>0.988  | 0.664<br>2.933           | 0.693<br>3.485 | 0.805          | 0.934<br>11.459       | 1.053<br>18.604                   | 1.164<br>28.003   | 1.270<br>39.889 | 1.370<br>54.477 | 1.466           | 1.559<br>92.579  | 1.648<br>116.480  |
| 0.01200<br>1/ 83  | 0.526           | 0.694<br>3.066           | 0.725 3.643    | 0.842          | 0.976                 | 1.100<br>19.442                   | 1.217 29.263      | 1.327<br>41.682 | 1.432<br>56.924 | 1.532           | 1.629<br>96.734  | 1.722<br>121.705  |
| 0.01300           | 0.548           | 0.723<br>3.193           | 0.755<br>3.795 | 0.877<br>6.885 | 1.016<br>12.473       | 1.146 20.246                      | 1.267<br>30.472   | 1.382<br>43.402 | 1.491<br>59.272 | 1.595<br>78.306 | 1.696<br>100.718 | 1.793<br>126.716  |
| 0.01400<br>1/ 71  | 0.569           | 0.751<br>3.316           | 0.784<br>3.941 | 0.910<br>7.149 | 1.055<br>12.950       | 1.189<br>21.019                   | 1.315<br>31.635   | 1.434<br>45.057 | 1.548<br>61.531 | 1.656<br>81.288 | 1.760<br>104.553 | 1.861,<br>131.538 |
| 0.01500           | 0.590           | 0.777<br>3.435           | 0.812<br>4.081 | 0.943<br>7.404 | 1.093<br>13.410       | 1.232 21.766                      | 1.362<br>32.758   | 1.485<br>46.655 | 1.602<br>63.710 | 1.715<br>84.166 | 1.823<br>108.252 | 1.927<br>136.191  |
| 0.01600<br>1/ 62  | 0.609           | 0.803<br>3.549           | 0.839<br>4.218 | 0.974<br>7.650 | 1.129<br>13.856       | 1.273<br>22.488                   | 1.407<br>33.843   | 1.534<br>48.199 | 1.655<br>65.819 | 1.771<br>86.950 | 1.883<br>111.831 | 1.990<br>140.691  |
| 0.01700<br>1/ 59  | 0.628           | 0.829<br>3.660           | 0.865          | 1.004<br>7.889 | 1.164<br>14.288       | 1.312<br>23.188                   | 1.451<br>34.895   | 1.582<br>49.697 | 1.707 67.862    | 1.826<br>89.647 | 1.941<br>115.299 | 2.052<br>145.052  |
| 0.01800           | 0.647<br>1.271  | 0.853<br>3.768           | 0.891<br>4.478 | 1.034<br>8.121 | 1.198<br>14.707       | 1.351<br>23.867                   | 1.493<br>35.917   | 1.628<br>51.151 | 1.757 69.846    | 1.880<br>92.267 | 1.998<br>118.667 | 2.112<br>149.287  |
| 0.01900<br>1/ 53  | 0.665           | 0.877<br>3.873           | 0.916<br>4.602 | 1.063<br>8.347 | 1.232<br>15.115       | 1.388<br>24.528                   | 1.535<br>36.911   | 1.673<br>52.565 | 1.805<br>71.776 | 1.932<br>94.815 | 2.053<br>121.942 | 2.170<br>153.406  |
|                   | Coeff           | icient for               | part-1         | full pip       | e s :                 |                                   |                   |                 |                 |                 |                  |                   |
|                   | 25              | 40                       | 40             | 50             | 60                    | 80                                | 90                | 100             | 120             | 130             | 140              | 150               |

ks = 0.600mm i < 0.1

### END OF SECTION A

### PLEASE TURN THE PAGE....

#### SECTION B (Answer THREE Questions from four)

4a) Sketch a "soil model" diagram clearly showing the solids, water and air components annotated with conventional symbols to allow development of 'soil property' equations.

#### (5 marks)

b) The total volume of a soil specimen is 80,000 mm3 and it weighs 150 grams. The dry weight of the specimen is 130 grams and the density of the soil solids is 2680 Kg/m3.

Find the following (use either the equations provided in the formulae sheet at the end of the exam paper or the ones you derived in part a):

- (i) The water content.
- (ii) Void Ratio.
- (iii) Porosity.
- (iv) Bulk unit weight.
- (v) Dry unit weight.

(15 marks)

**Total 20 marks** 

PARTINA

5. The following results are obtained from a standard compaction test:

| Moisture Content<br>(%) | 11     | 12.1   | 12.8   | 13.6 | 14.6 | 16.3   |
|-------------------------|--------|--------|--------|------|------|--------|
| Mass of Soil (g)        | 1920.5 | 2051.5 | 2138.5 | 2147 | 2120 | 2081.5 |

The specific gravity of the solids is 2.7 and the volume of the compaction mould is 1000cm<sup>3</sup>.

a) Plot the compaction curve and obtain the maximum dry density and optimum moisture content.

#### (10 marks)

b) At the maximum dry density, calculate the corresponding air content  $(A_v)$ , void ratio (*e*) and degree of saturation  $(S_r)$ .

(10 marks)

#### Total 20 marks

6. The table given below shows the mass of a soil sample retained on each sieve in a sieve analysis experiment. The total mass of a soil sample is 650gram.

| Sieve<br>number | Diameter (mm) | Mass of soil<br>retained on<br>each sieve | Percent<br>retained on<br>each sieve | Cumulative<br>retained on<br>each sieve | Percent<br>finer (%) |
|-----------------|---------------|-------------------------------------------|--------------------------------------|-----------------------------------------|----------------------|
|                 |               |                                           | (%)                                  | (%)                                     |                      |
| 4               | 4.750         | 30                                        |                                      |                                         |                      |
| 10              | 2.000         | 44                                        |                                      |                                         |                      |
| 20              | 0.850         | 50                                        |                                      |                                         |                      |
| 40              | 0.425         | 132                                       |                                      |                                         |                      |
| 60              | 0.250         | 228                                       |                                      |                                         |                      |
| 100             | 0.150         | 88                                        |                                      |                                         |                      |
| 200             | 0.075         | 46                                        |                                      |                                         |                      |
| Pan             |               | 32                                        |                                      |                                         |                      |

a) Determine the percent finer (%)

(5 marks)

b) Draw the particle-size distribution curve (PDC)

(10 marks)

Question 6 continues over the page....

#### Question 6 continued....

c) Obtain the Coefficient of Uniformity  $(C_u)$  and the Coefficient of Curvature  $(C_c)$ . Indicate whether the soil sample is well or poorly graded.

(5 marks)

Total 20 marks

- 7a) Use the soil texture triangle to name the correct textural class for the following percentages:
  - (i) Clay 25%; Silt 25%, and Sand 50%. Circle the correct texture:
    - a. Clay loam
    - b. Silty clay
    - c. Sandy clay loam
    - d. Clay

#### (5 marks)

(ii) Clay 35%; Silt 40%, and Sand 25%. Circle the correct texture:

- e. Clay loam
- f. Silty clay
- g. Sandy clay loam
- h. Clay

#### (5 marks)

b) A soil sample has a water content of 15%, a porosity of 45%, and a specific gravity of 2.68. Determine the void ratio and the degree of saturation.

(10 marks)

Total 20 marks

## END OF QUESTIONS

Formulae and definitions over the page....



PLEASE TURN THE PAGE....



## TERMINOLOGY, SYMBOLS AND UNITS

|     | <u>Term</u>           | <u>Symbol</u> | <u>Units</u>            |
|-----|-----------------------|---------------|-------------------------|
|     | Volume                |               | m <sup>3</sup>          |
|     | Mass                  |               | kg                      |
|     | Gravity               | g             | 9.81 m/sec <sup>2</sup> |
|     | Weight                |               | kN = (kg x 9.81)/1000   |
|     |                       |               | Q.                      |
|     | Total volume          | V             | m <sup>3</sup>          |
|     | Volume of air         | VA            | m <sup>3</sup>          |
|     | Volume of water       | Vw            | m <sup>3</sup>          |
|     | Volume of voids       | Vv            | m <sup>3</sup>          |
|     | Volume of Solids      | Vs            | m <sup>3</sup>          |
|     |                       |               |                         |
|     | Mass of water         | Mw            | kg                      |
|     | Mass of solids        | Ms            | kg                      |
|     | Total mass            | М             | kN                      |
|     |                       |               |                         |
|     | Specific gravity      | Gs            | None                    |
|     | Density of water      | ρw            | 1000kg/m <sup>3</sup>   |
|     | Unit weight of water  | γw            | 9.81 kN/m <sup>3</sup>  |
|     | Void ratio            | е             | None                    |
|     | Degree of saturation  | Sr            | None                    |
|     | Moisture content      | W             | None                    |
|     | Porosity              | n             | None                    |
|     |                       |               |                         |
|     | Soil Bulk density     | ρь            | kg/m <sup>3</sup>       |
|     | Dry density           | ρd            | kg/m <sup>3</sup>       |
|     | Saturated density     | ρsat          | kg/m <sup>3</sup>       |
|     | Soil Bulk unit weight | γb            | kN/m <sup>3</sup>       |
| QV. | Dry unit weight       | γd            | kN/m <sup>3</sup>       |
|     | Saturated unit weight | γsat          | kN/m <sup>3</sup>       |

## DEFINITIONS

| Term                                         | Expression                            |                         |
|----------------------------------------------|---------------------------------------|-------------------------|
| Density of water, $\rho_w$                   | mass of water<br>volume of water      | $\frac{M_w}{V_w}$       |
| Unit weight of water, $\gamma_w$             | weight of water<br>volume of water    | $\frac{W_w}{V_w}$       |
| Specific gravity, Gs                         | density of solids<br>density of water | $\frac{\rho}{\rho}$ w   |
| Water content, w                             | mass of water<br>mass of solids       | $\frac{M_w}{M_s}$       |
| Void ratio, e                                | volume of voids volume of solids      | Vv<br>Vs                |
| Degree of saturation, Sr                     | volume of water<br>volume of voids    | $\frac{V_w}{V_v}$       |
| Porosity, n                                  | volume of voids<br>total volume       | Vv<br>V                 |
| Soil Bulk density, pb                        | total mass<br>total volume            | M<br>V                  |
| Dry density, pd                              | <u>mass of solids</u><br>total volume | Ms<br>V                 |
| Saturated density, $\rho_{sat}$              | total saturated mass<br>total volume  | s <u>M</u><br>V         |
| Soil Bulk unit weight, $\gamma_b$            | <u>total weight</u><br>total volume   | W/V                     |
| Dry unit weight, $\gamma_d$                  | weight of solids<br>total volume      | $\frac{W_s}{V}$         |
| Saturated unit weight, $\gamma_{\text{sat}}$ | total saturated weig<br>total volume  | <u>ht</u> <u>W</u><br>V |

### **BASIC PROPERTIES Formulae:**

