UNIVERSITY OF BOLTON

ENGINEERING, SPORTS AND SCIENCES ACADEMIC GROUP

B.ENG (HONS) BIOMEDICAL ENGINEERING

SEMESTER TWO EXAMINATION 2018/2019

MEDICAL SENSORY DEVICES \& MEASUREMENT

MODULE NO: BME4004

Date: Wednesday 22 ${ }^{\text {nd }}$ May 2019

INSTRUCTIONS TO CANDIDATES:

Time: 14:00-16:00

There are FIVE questions.
Answer ANY FOUR questions.
All questions carry equal marks.

Marks for parts of questions are shown in brackets.

Electronic calculators may be used provided that data and program storage memory is cleared prior to the examination.

CANDIDATES REQUIRE:

University Of Bolton
Engineering, Sports And Sciences Academic Group
B.Eng (Hons) Biomedical Engineering

Semester Two Examination 2018/2019
Medical Sensory Devices \& Measurement
Module No. BME4004

Question 1

(a) A resistive circuit is shown in Fig. $\mathrm{Q}_{1 \mathrm{a}}$
(i) Why do we need to use the Thévenin's and Norton's Theorems?
(ii) Determine Thévenin and Norton equivalent circuits of the circuit in Fig. $\mathrm{Q}_{1 a}$

Fig. $Q_{1 a}$
(b) For the circuit shown in Fig. Q1b below, Find:
(i) the voltage across RLoad using the superposition method
(ii) the current flowing through the R_{2} resistor

Fig. $Q_{1 b}$
Total 25 marks

University Of Bolton
Engineering, Sports And Sciences Academic Group
B.Eng (Hons) Biomedical Engineering

Semester Two Examination 2018/2019
Medical Sensory Devices \& Measurement
Module No. BME4004

Question 2

a) A $180 \mu C$ charge is available in a 30 V capacitor. What is its capacitance value in μ Farads and what is the stored energy in joule?
[5 marks]
b) A straight wire carries a current of 10 A . positioned at the centre of a 200 mm diameter. What is the magnetic field strength H at the circumference of this circle?
[5 marks]
c) What is the inductive reactance of a 20 mH inductor working on a 50 Hz frequency and what is the stored energy in joules if the voltage across the inductor is 240 V ?
[5 marks]
d) A 2 A. current flows through a coil and produce mmf of a 400 A.T.
i) What is the number of turns of this coil?
ii) What is the inductance of this coil with air core?
[5 marks]
iii) What is its inductance with iron core of relative permeability $=1200$?

Assume the ratio of coil length to its cross-sectional area is $1 / 4$.
[2 marks]
Total 25 marks

Question 3

Fig. Q3 shows an RLC parallel circuit.
(a) Determine the values of:
i. The current in each branch
[4 marks]
ii. The total current I_{T}
[4 marks]
iii. total impedance Z
[3 marks]
iv. The phase difference between the supply voltage and the circuit current θ
(b) Determine whether the circuit is inductive or capacitive? Illustrate your answer with the aid of the phasor diagram.
[4 marks]

University Of Bolton
Engineering, Sports And Sciences Academic Group
B.Eng (Hons) Biomedical Engineering

Semester Two Examination 2018/2019
Medical Sensory Devices \& Measurement
Module No. BME4004

Q3 continued....

(c) Calculate the resonant frequency of the circuit and the peak current flowing in the circuit at the resonant frequency

Fig. Q3 RLC parallel circuit
Total 25 marks

University Of Bolton
Engineering, Sports And Sciences Academic Group
B.Eng (Hons) Biomedical Engineering

Semester Two Examination 2018/2019
Medical Sensory Devices \& Measurement
Module No. BME4004

Question 4

(a) For a single-phase transformer of rated power of 500 V.A, what would be:
(i) its secondary voltage
(ii) its primary and secondary currents

If it has a turns ratio $\left(\frac{N_{1}}{N_{2}}\right)$ of 10:1 (step down) and when it is connected to a supply mains of $250 \mathrm{~V}, 50 \mathrm{~Hz}$.
(b) Design the clock signal frequency of a stepper motor to rotate at $750 \mathrm{rpm}(+/-15$ $\mathrm{rpm})$. Given that the stepper motor has the accuracy of 5 degree per step.
[10 marks]
(c) Fig. 4 shows a single-loop Direct Current machine. Is it a generator or a motor? Explain briefly with the aid of diagrams its operation.
[4 marks]
(d) If we replace the DC voltage source by a load resistor and rotate the loop anticlockwise, draw the direction of generated EMF and current in the loop as well as the output voltage waveform.
[4 marks]

Fig. 4 A single-loop DC machine

University Of Bolton
Engineering, Sports And Sciences Academic Group
B.Eng (Hons) Biomedical Engineering

Semester Two Examination 2018/2019
Medical Sensory Devices \& Measurement
Module No. BME4004

Question 5

(a) Explain the biomedical instrumentation modes of operation in terms of the source of power.
[6 marks]
(b) Describe the compensation techniques used in biomedical sensory devices.
[7 marks]
(c) Enumerate four of static characteristics of the biomedical sensory devices.
[4 marks]
(d) Explain the operation of a full-wave rectifier used to produce low ripple DC output voltage in a biomedical instrument.

Illustrate your answer with the aid of diagrams
[8 marks]

Total 25 marks

END OF QUESTIONS

Formula sheets over the page....
PLEASE TURN THE PAGE....

University Of Bolton
Engineering, Sports And Sciences Academic Group
B.Eng (Hons) Biomedical Engineering

Semester Two Examination 2018/2019
Medical Sensory Devices \& Measurement
Module No. BME4004

Formula sheet

These equations are given to save short-term memorisation of details of derived equations and are given without any explanation or definition of symbols; the student is expected to know the meanings and usage.

Ohm's law: $V=I R$, Power: $P=I V$, Magnetic flux: $\Phi=B A$, Induced voltage: $V=N . \Delta \Phi / \Delta t$
$\mu_{o}=4 \pi X 10^{-7} \mathrm{H} / \mathrm{m}, \epsilon_{o}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$
$H=\frac{N \cdot I}{l}$
MMF=N.I
$L=\frac{\mu_{o} \mu_{r} A N^{2}}{l}, \quad E=\frac{1}{2} L I^{2}$
$\mathrm{C}=\mathrm{Q} / \mathrm{V}, \quad \mathrm{C}=\frac{\epsilon A}{d}, \quad \mathrm{E}=\frac{1}{2} C V^{2}$
$v_{L}=L \cdot \frac{d i_{L}}{d t}$
$i_{C}=C \frac{d v_{C}}{d t}$
$f=\frac{p n}{120}$

Transformer voltage ratio: $\frac{V_{1}}{V_{2}}=\frac{N_{1}}{N_{2}}, \mathrm{P}=\mathrm{V}_{1} \cdot \mathrm{I}_{1}=\mathrm{V}_{2} \cdot \mathrm{I}_{2}$
Magnitude of the Reactance of Inductor $L: X_{L}=2 \pi f L$
Magnitude of the Reactance of Capacitor C : $X_{C}=\frac{1}{2 \pi f C}$
Pythagorean Theorem: $\mathrm{c}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$
Tangent function: $\tan \theta=$ opposite/adjacent

Multiply the Value	By	To Get the Value
Peak	2	Peak-to-peak
Peak-to-peak	0.5	Peak
Peak	0.637	Average
Average	1.570	Peak
Peak	0.707	RMS (effective)
RMS (effective)	1.414	Peak
Average	1.110	RMS (effective)
RMS (effective)	0.901	Average

University Of Bolton
Engineering, Sports And Sciences Academic Group
B.Eng (Hons) Biomedical Engineering

Semester Two Examination 2018/2019
Medical Sensory Devices \& Measurement
Module No. BME4004

Summary Table for Series and Parallel RC Circuits

X_{C} and R in Series	X_{C} and R in Parallel
I the same in X_{C} and R	V_{T} the same across X_{C} and R
$V_{T}=\sqrt{V_{R}^{2}+V_{C}^{2}}$	$I_{T}=\sqrt{I_{R}^{2}+I_{C}^{2}}$
$Z=\sqrt{R^{2}+X_{C}^{2}}=\frac{V_{T}}{I}$	$Z_{T}=\frac{V_{T}}{I_{T}}$
V_{C} lags V_{R} by 90°	I_{C} leads I_{R} by 90°
$\theta=\arctan \left(-\frac{X_{C}}{R}\right)$	$\theta=\arctan \frac{I_{C}}{I_{R}}$

Summary Table for Series and Parallel RL Círcuits

X_{L} and R in Series	X_{L} and R in Parallel
I the same in X_{L} and R	V_{T} the same across X_{L} and R
$V_{T}=\sqrt{V_{R}^{2}+V_{L}^{2}}$	$I_{T}=\sqrt{I_{R}^{2}+I_{L}^{2}}$
$Z=\sqrt{R^{2}+X_{L}^{2}}=\frac{V_{T}}{I}$	$Z_{T}=\frac{V_{T}}{I_{T}}$
V_{R} lags V_{L} by 90°	I_{L} lags I_{R} by 90°
$\theta=\arctan \frac{X_{L}}{R}$	$\theta=\arctan \left(-\frac{I_{L}}{I_{R}}\right)$

