UNIVERSITY OF BOLTON

SCHOOL OF ENGINEERING

BENG (HONS) IN MECHANICAL ENGINEERING

SEMESTER TWO EXAMINATION 2018/2019

ENGINEERING PRINCIPLES 2

MODULE NO: AME4063 & AME4053

Date: Wednesday 22nd May 2019

Time: 10:00 – 12:00

INSTRUCTIONS TO CANDIDATES:

This paper is split into two parts; Part A and Part B. There are <u>THREE</u> questions in Part A and <u>THREE</u> questions in Part B.

Answer <u>FOUR</u> questions in total; <u>TWO</u> questions from Part A and <u>TWO</u> questions from Part B.

All questions carry equal marks.

Marks for parts of questions are shown in brackets.

This examination paper carries a total of 100 marks.

CANDIDATES REQUIRE:

Formula sheet (attached)

Part A

Q1

 A flywheel 0.9 m diameter has its initial angular velocity of 6rad/s increased to its final angular velocity with an angular acceleration of 12 rad/s² whilst making 100 revolutions.

Calculate:

i) The final angular velocity of the flywheel

ii) The time taken for the 100 revolutions

iii) The linear acceleration and final linear velocity of a point on the rim of the flywheel

(5 marks)

(5 marks)

(5 marks)

b) A turbine rotor has a moment of inertia of 1.4 Mgm². Determine the acceleration torque required to accelerate the rotor from 26000 rev /min to 2700 rev/min in a time of 2s. .

(10 marks)

Total 25 marks

Q2

a) for the beam cross section shown in Figure Q2a find the centroid.

Figure Q2A

(15 marks) Q2 continues over the page…

PLEASE TURN THE PAGE.....

Q2 continued...

b) Define the moment of inertia and radius of gyration

(10 marks)

Total 25 marks

Q3

a) Find the second moment of area and radius of gyration about the axis XX for the beam section shown in Figure Q3a.

(10 marks)

b) A rectangular section beam has a depth of 100mm and width 24 mm and is subject to a bending moment of 2.5kN m. Calculate the maximum stress in the beam .Take E=206 GPa

(8 marks)

C) A solid steel shaft 2m long and 60mm diameter rotates at 200rev/min. Calculate the torque when the maximum shear stress in the shaft is 70 MPa.

(7 marks)

Total 25 marks

END OF PART A

PLEASE TURN THE PAGE FOR PART B.....

PART B

Q4) a) Calculate the derivative of the function *f* defined by:

$$f(x) = x^2$$

from first principles.

b) Calculate the first derivative of the following functions:

i)	$5e^{-2x} + 4x^3$	(2 marks)
ii)	$2\cos(3x+6)$	(3 marks)
iii)	$6xe^{-4x}$	(3 marks)
iv)	$\frac{2x+1}{x^2+2}$	(3 marks)

c) Find and classify the stationary points of the curve y = f(x) where the function *f* is defined by:

$$f(x) = 2x^3 - 21x^2 + 60x + 4$$
 (4 marks)

d) Consider the following equation:

$$e^{2x} - 8x^2 = 4$$

(i)	Show there is a solution to this equation on the interval[0,2].	(2 marks)
(ii)	Use the method of bisection <i>once</i> to find a first approximation to the solution of the equation.	(2 marks)
(iii)	Using the approximation calculated in (ii) as your initial value, use the Newton-Raphson method to find a solution to the equation accurate to 2 decimal places.	(3 marks)

Total: 25 marks

(3 marks)

PLEASE TURN THE PAGE.....

- (i) $\int_{1}^{2} (10x^{4} + \frac{1}{2}x^{2}) dx$ (4 marks)
- (ii) $\int_0^\pi x \cos(3x) \, dx$

(iii)
$$\int_0^2 \cos(2x - 4) \, dx$$

using the substitution $u = g(x) = 2x - 4$

(4 marks)

(4 marks)

b) Find the area between the curves y = 2, $y = \sqrt{x}$ and the y-axis, as indicated by the blue region in the following diagram: (5 marks)

c) Consider the following integral: $\int_0^3 \frac{1}{r^{3}+1}$

 $\int_0^3 \frac{1}{x^3 + 10} \, dx \, .$

Approximate the value of this integral with 6 strips using:

- (i) the trapezoidal rule; and (4 marks)
- (ii) Simpson's rule. (4 marks)

Give your answers to 4 decimal places.

Total 25 marks

Semester Two Examination 2018/2019 Engineering Principles 2 Module No: AME4063 & AME4053

PLEASE TURN THE PAGE.....

Q6) a) Find the particular solution to the following differential equations:

(i)
$$\begin{cases} y' = 2xy \\ y(0) = 4 \end{cases}$$
 (5 marks)
(ii)
$$\begin{cases} xy' + 3y = 4x \\ y(2) = 3 \end{cases}$$
 (5 marks)
(iii)
$$\begin{cases} y' + x = \cos(2x) \\ y(0) = 1 \end{cases}$$
 (5 marks)

b) Find the particular solution of the differential equation:

 $\begin{pmatrix} y'' + 7y' + 12y = 0 \\ y(0) = 1 \\ y'(0) = 1 \end{cases}$ (10 marks)

Total: 25 marks

END OF PART B

END OF QUESTIONS

PLEASE TURN THE PAGE FOR FORMULA SHEETS.....

Formula Sheet

2 nd Moments of Area	
Rectangle $I = \frac{bd^3}{12}$	
Circle I = $\frac{\pi d^4}{64}$	Polar J = $\frac{\pi d^4}{32}$
Parallel Axis Theorem	
$I_{xx} = I_{GG} + Ah^2$	
Bending	
$\frac{M}{I} = \frac{\sigma}{y} = \frac{E}{R}$	
Torsion	
$\frac{T}{J} = \frac{\tau}{r} = \frac{G\vartheta}{\ell}$	
Motion	
v = u + at	$\omega_2 = \omega_1 + \alpha t$
$v^2 = u^2 + 2as$	$\omega_2^2 = \omega_1^2 + 2\alpha\vartheta$
$S = \left(\frac{u+v}{2}\right)t$	$\mathcal{G} = \left(\frac{\omega_1 + \omega_2}{2}\right) t$
$s = ut + \frac{1}{2} at^2$	$\vartheta = \omega_1 t + \frac{1}{2} \alpha t^2$
Speed = <u>Distance</u> Time	Acceleration = <u>Velocity</u> Time
$s = r \vartheta$	
$V = \omega r$ a = αr	

Torque and Angular

 $T = I\alpha$ $I = mk^2$

$$I = mk$$

 $P = T\omega$

Energy and Momentum

Potential Energy = mgh

Kinetic Energy Linear = $\frac{1}{2}$ mv²

Angular = $\frac{1}{2}$ I ω^2

Momentum

Linear = mv

Angular = $I\omega$

Vibrations

Linear Stiffness $k = \frac{F}{\delta}$

Circular frequency $\omega_n = \sqrt{\frac{1}{2}}$

Frequency $f_n = \frac{\omega_n}{2\pi}$

$$x = r \cos \omega t$$
$$v = -\omega \sqrt{r^2 - x^2} = -\omega r \sin \omega t$$

$$a = -\omega^2 x$$

 $f = \frac{1}{T}$

$$T = \frac{2\pi}{\omega}$$

$$F = ma$$

Numerical Methods

Trapezium Rule for n Strips:

$$\int_{a}^{b} f(x) dx \approx \frac{1}{2} h \Big[y_{0} + 2 (y_{1} + y_{2} + y_{3} + \dots + y_{n-1}) + y_{n} \Big]$$

Simpson's Rule for n Strips (where n must be even):

$$\int_{a}^{b} f(x) dx \approx \frac{1}{3} h \left[y_{0} + 4 \left(\underbrace{y_{1} + y_{3} + \dots + y_{n-1}}_{\text{Even numbered terms}} \right) + 2 \left(\underbrace{y_{2} + y_{4} + \dots + y_{n-2}}_{\text{Even numbered terms}} \right) + y_{n} \right]$$

Newton-Raphson Method

Approximate solutions to f(x) = 0 (i.e. roots of the function f) can be found using the iterative scheme:

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}$$

with $x = x_0$ some (given) initial point.

Integration and Differentiation

Differentiation from First Principles

The first derivative of a function f(x) with respect to x is given by:

$$f'(x) = \lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h} \right).$$

Table of Derivatives and Integrals

In the table below, m, n are any real numbers.

$\int F(x) dx$	F(x)	F'(x)
$\int f(x) dx + \int g(x) dx$	f(x) + g(x)	$f^{\prime}(x)+g^{\prime}(x)$
$m\int f(x)dx$	mf(x)	mf'(x)
mx + C	m	0
$\frac{x^{n+1}}{n+1} + C \qquad (n \neq 1)$	x^n	nx^{n-1}
$\ln(x) + C$	$\frac{1}{x}$	$-\frac{1}{x^2}$
$\frac{1}{m}e^{mx} + C$	e^{mx}	me^{mx}
$x - x\ln(mx) + C$	$\ln(mx)$	$\frac{1}{x}$
$\frac{1}{m}\sin(mx) + C$	$\cos(mx)$	$-m\sin(mx)$
$-\frac{1}{m}\cos(mx) + C$	$\sin(mx)$	$m\cos(mx)$

Rules of Differentiation

$$\frac{\text{PRODUCT RULE:}}{\frac{d}{dx}} \left(f(x)g(x) \right) = f'(x)g(x) + f(x)g'(x)$$

$$\frac{\text{QUOTIENT RULE:}}{\frac{d}{dx}} \left(\frac{f(x)}{g(x)} \right) = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$$

$$\frac{\text{CHAIN RULE:}}{\frac{d}{dx}} \left(f(g(x)) \right) = g'(x) \cdot f'(g(x))$$

Rules of Integration

$$\frac{\text{INTEGRATION BY PARTS}}{\text{INTEGRATION BY SUBSTITUTION}}: \qquad \int_{x=a}^{b} f(x)g'(x) \, dx = \left[f(x)g(x) \right]_{x=a}^{b} - \int_{x=a}^{b} f'(x)g(x) \, dx$$
$$\frac{\text{INTEGRATION BY SUBSTITUTION}}{\int_{x=a}^{b} F(g(x)) g'(x) \, dx} = \int_{u=g(a)}^{g(b)} F(u) \, du$$

with the substitution u = g(x) and where F'(x) = f(x).

Local Maxima and Minima of a Function

A curve defined by y = f(x) in terms of some function f has stationary points where f'(x) = 0. These are then classified using the Second Derivative Test:

Let x = a be a stationary point of f(x) then:

$$\begin{array}{lll} f''(a) > 0 & \implies & x = a \text{ is a } \underline{\text{local minimum}} \\ f''(a) < 0 & \implies & x = a \text{ is a } \underline{\text{local maximum}} \\ f''(a) = 0 & \implies & \text{the test is inconclusive.} \end{array}$$

Differential Equations

First-order ODEs:

The following denote methods of solving first-order ordinary differential equations:

DIRECT INTEGRATION

$$y' = f(x) \implies y = \int f(x) \, dx$$

SEPARATION OF VARIABLES

$$y' = f(x) \cdot g(y) \implies F(y) = \int f(x) \, dx$$
 where $F'(y) = \frac{y'}{g(y)}$.

INTEGRATING FACTOR

$$y' + f(x)y = g(x) \implies y = \frac{1}{M(x)} \int M(x)g(x) dx$$

where $M(x) = \exp\left(\int f(x) \, dx\right)$ is the integrating factor.

Second-order ODEs

The solution to the second-order homogeneous differential equation with constant coefficients:

$$y'' + Ay' + B = 0$$

is determined by the roots of its auxiliary equation:

Case	Roots	General Solution
I	Two real: M_1, M_2	$y = Ae^{M_1x} + Be^{M_2x}$
П	One real (double) root: M	$y = (A + Bx)e^{Mx}$
Ш	Complex conjugate pair: $P\pm i\omega$	$y = \left(A\cos(\omega x) + B\sin(\omega x)\right)e^{Px}$

END OF FORMULA SHEETS

END OF PAPER