UNIVERSITY OF BOLTON

SCHOOL OF ENGINEERING

BENG (HONS) IN MECHANICAL ENGINEERING

SEMESTER TWO EXAMINATION 2018/2019

ENGINEERING PRINCIPLES 2

MODULE NO: AME4063 \& AME4053

Date: Wednesday 22 ${ }^{\text {nd }}$ May 2019
Time: 10:00-12:00

INSTRUCTIONS TO CANDIDATES:

This paper is split into two parts; Part A and Part B. There are THREE questions in Part A and THREE questions in Part B.

Answer FOUR questions in total; TWO questions from Part A and TWO questions from Part B.

All questions carry equal marks.
Marks for parts of questions are shown in brackets.

This examination paper carries a total of 100 marks.

CANDIDATES REQUIRE:

School of Engineering
BEng (Hons) in Mechanical Engineering
Semester Two Examination 2018/2019
Engineering Principles 2
Module No: AME4063 \& AME4053

Part A

Q1
a) A flywheel 0.9 m diameter has its initial angular velocity of $6 \mathrm{rad} / \mathrm{s}$ increased to its final angular velocity with an angular acceleration of $12 \mathrm{rad} / \mathrm{s}^{2}$ whilst making 100 revolutions.

Calculate:
i) The final angular velocity of the flywheel
ii) The time taken for the 100 revolutions
iii) The linear acceleration and final linear velocity of a point on the rim of the flywheel
b) A turbine rotor has a moment of inertia of $1.4 \mathrm{Mgm}^{2}$. Determine the acceleration torque required to accelerate the rotor from $26000 \mathrm{rev} / \mathrm{min}$ to $2700 \mathrm{rev} / \mathrm{min}$ in a time of 2 s . .
(10 marks)

Total 25 marks

Q2
a) for the beam cross section shown in Figure Q2a find the centroid.

Figure Q2A

School of Engineering
BEng (Hons) in Mechanical Engineering
Semester Two Examination 2018/2019
Engineering Principles 2
Module No: AME4063 \& AME4053

PLEASE TURN THE PAGE....

Q2 continued...

b) Define the moment of inertia and radius of gyration
(10 marks)

Total 25 marks

Q3
a) Find the second moment of area and radius of gyration about the axis XX for the beam section shown in Figure Q3a.

Figure Q3a
b) A rectangular section beam has a depth of 100 mm and width 24 mm and is subject to a bending moment of 2.5 kN m. Calculate the maximum stress in the beam .Take $\mathrm{E}=206 \mathrm{GPa}$
C) A solid steel shaft 2 m long and 60 mm diameter rotates at $200 \mathrm{rev} / \mathrm{min}$. Calculate the torque when the maximum shear stress in the shaft is 70 MPa .

School of Engineering
BEng (Hons) in Mechanical Engineering
Semester Two Examination 2018/2019
Engineering Principles 2
Module No: AME4063 \& AME4053

PART B

Q4) a) Calculate the derivative of the function f defined by:

$$
f(x)=x^{2}
$$

from first principles.
(3 marks)
b) Calculate the first derivative of the following functions:
i) $\quad 5 e^{-2 x}+4 x^{3}$
ii) $\quad 2 \cos (3 x+6)$
(3 marks)
iii) $\quad 6 x e^{-4 x}$
iv) $\frac{2 x+1}{x^{2}+2}$
(3 marks)
c) Find and classify the stationary points of the curve $y=f(x)$ where the function f is defined by:

$$
\begin{equation*}
f(x)=2 x^{3}-21 x^{2}+60 x+4 \tag{4marks}
\end{equation*}
$$

d) Consider the following equation:

$$
\mathrm{e}^{2 x}-8 x^{2}=4
$$

(i) Show there is a solution to this equation on the interval[0,2].
(ii) Use the method of bisection once to find a first approximation to the solution of the equation.
(iii) Using the approximation calculated in (ii) as your initial value, use the Newton-Raphson method to find a solution to the equation accurate to 2 decimal places.

School of Engineering
BEng (Hons) in Mechanical Engineering
Semester Two Examination 2018/2019
Engineering Principles 2
Module No: AME4063 \& AME4053

PLEASE TURN THE PAGE.....

Q5) a) Evaluate the following definite integrals:
(i) $\int_{1}^{2}\left(10 x^{4}+\frac{1}{2} x^{2}\right) d x$
(ii) $\int_{0}^{\pi} x \cos (3 x) d x$
(iii) $\int_{0}^{2} \cos (2 x-4) d x$
using the substitution $u=g(x)=2 x-4$.
b) Find the area between the curves $y=2, y=\sqrt{x}$ and the y-axis, as indicated by the blue region in the following diagram:

c) Consider the following integral: $\quad \int_{0}^{3} \frac{1}{x^{3}+10} d x$.

Approximate the value of this integral with 6 strips using:
(i) the trapezoidal rule; and
(ii) Simpson's rule.

Give your answers to 4 decimal places.

School of Engineering
BEng (Hons) in Mechanical Engineering
Semester Two Examination 2018/2019
Engineering Principles 2
Module No: AME4063 \& AME4053

PLEASE TURN THE PAGE.....

Q6) a) Find the particular solution to the following differential equations:
(i) $\left\{\begin{array}{l}y^{\prime}=2 x y \\ y(0)=4\end{array}\right.$
(5 marks)
(ii) $\left\{\begin{array}{c}x y^{\prime}+3 y=4 x \\ y(2)=3\end{array}\right.$
(5 marks)
(iii) $\left\{\begin{array}{c}y^{\prime}+x=\cos (2 x) \\ y(0)=1\end{array}\right.$.
b) Find the particular solution of the differential equation:

$$
\left\{\begin{array}{c}
y^{\prime \prime}+7 y^{\prime}+12 y=0 \tag{10marks}\\
y(0)=1 \\
y^{\prime}(0)=1
\end{array}\right.
$$

Total: 25 marks

END OF PART B

END OF QUESTIONS

School of Engineering
BEng (Hons) in Mechanical Engineering
Semester Two Examination 2018/2019
Engineering Principles 2
Module No: AME4063 \& AME4053

Formula Sheet

$\underline{2^{\text {nd }} \text { Moments of Area }}$
Rectangle $\quad I=\frac{\mathrm{bd}^{3}}{12}$
Circle $\quad \mathrm{I}=\frac{\pi d^{4}}{64}$
Polar $\mathrm{J}=\frac{\pi d^{4}}{32}$
Parallel Axis Theorem
$I_{x x}=I_{G G}+A h^{2}$
Bending
$\frac{M}{l}=\frac{\sigma}{y}=\frac{E}{R}$

Torsion

$\frac{T}{J}=\frac{\tau}{r}=\frac{G \vartheta}{\ell}$
Motion
$v=u+a t$
$\omega_{2}=\omega_{1}+\alpha t$
$v^{2}=u^{2}+2 a s$ $\omega_{2}^{2}=\omega_{1}^{2}+2 \alpha \vartheta$
$\mathrm{s}=\left(\frac{u+v}{2}\right) t$
$\vartheta=\left(\frac{\omega_{1}+\omega_{2}}{2}\right) t$
$s=u t+1 / 2 a^{2}$
$\vartheta=\omega_{1} t+\frac{1}{2} \alpha t^{2}$
Speed $=\quad \frac{\text { Distance }}{\text { Time }}$
Acceleration =
Velocity Time
$\mathrm{s}=\mathrm{r} \vartheta$
$\mathrm{V}=\omega \mathrm{r}$
$a=\alpha r$

School of Engineering
BEng (Hons) in Mechanical Engineering
Semester Two Examination 2018/2019
Engineering Principles 2
Module No: AME4063 \& AME4053

Torque and Angular

$T=I \alpha$
$I=m k^{2}$
$P=T \omega$

Energy and Momentum

Potential Energy $=\mathrm{mgh}$
Kinetic Energy
Linear $=1 / 2 \mathrm{mv}^{2}$
Angular $=1 / 2 l \omega^{2}$
Momentum
Linear $=m v$
Angular $=1 \omega$
Vibrations
Linear Stiffness $k=\frac{F}{\delta}$
Circular frequency $\omega_{n}=\sqrt{\frac{k}{m}}$
Frequency $f_{n}=\frac{\omega_{n}}{2 \pi}=\frac{1}{T_{n}}$
$x=r \cos \omega t$
$v=-\omega \sqrt{r^{2}-x^{2}}=-\omega r \sin \omega t$
$a=-\omega^{2} x$
$f=\frac{1}{T}$
$T=\frac{2 \pi}{\omega}$
$F=m a$

School of Engineering
BEng (Hons) in Mechanical Engineering
Semester Two Examination 2018/2019
Engineering Principles 2
Module No: AME4063 \& AME4053

Numerical Methods

In both approximation rules:

$$
h=\frac{b-a}{n} \quad \text { where } n \text { is the number of strips. }
$$

Trapezium Rule for \boldsymbol{n} Strips:

$$
\int_{a}^{b} f(x) d x \approx \frac{1}{2} h\left[y_{0}+2\left(y_{1}+y_{2}+y_{3}+\cdots \cdots+y_{n-1}\right)+y_{n}\right]
$$

Simpson's Rule for \boldsymbol{n} Strips (where \boldsymbol{n} must be even):

$$
\int_{a}^{b} f(x) d x \approx \frac{1}{3} h[y_{0}+4(\overbrace{\left(y_{1}+y_{3}+\cdots+y_{n-1}\right.}^{\text {Odd numbered terms }})+2(\underbrace{y_{2}+y_{4}+\cdots+y_{n-2}}_{\text {Even numbered terms }})+y_{n}]
$$

Newton-Raphson Method

Approximate solutions to $f(x)=0$ (i.e. roots of the function f) can be found using the iterative scheme:

$$
x_{n}=x_{n-1}-\frac{f\left(x_{n-1}\right)}{f^{\prime}\left(x_{n-1}\right)}
$$

with $x=x_{0}$ some (given) initial point.

School of Engineering
BEng (Hons) in Mechanical Engineering
Semester Two Examination 2018/2019
Engineering Principles 2
Module No: AME4063 \& AME4053

Integration and Differentiation

Differentiation from First Principles

The first derivative of a function $f(x)$ with respect to x is given by:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0}\left(\frac{f(x+h)-f(x)}{h}\right) .
$$

Table of Derivatives and Integrals
In the table below, m, n are any real numbers.

$\int F(x) d x$	$F(x)$	$F^{\prime}(x)$
$\int f(x) d x+\int g(x) d x$	$f(x)+g(x)$	$f^{\prime}(x)+g^{\prime}(x)$
$m \int f(x) d x$	$m f(x)$	$m f^{\prime}(x)$
$m x+C$	m	0
$\frac{x^{n+1}}{n+1}+C \quad(n \neq 1)$	x^{n}	$n x^{n-1}$
$\ln (x)+C$	$\frac{1}{x}$	$-\frac{1}{x^{2}}$
$\frac{1}{m} e^{m x}+C$	$e^{m x}$	$m e^{m x}$
$x-x \ln (m x)+C$	$\ln (m x)$	$\frac{1}{x}$
$\frac{1}{m} \sin (m x)+C$	$\cos (m x)$	$-m \sin (m x)$
$-\frac{1}{m} \cos (m x)+C$	$\sin (m x)$	$m \cos (m x)$

PLEASE TURN THE PAGE.....

School of Engineering
BEng (Hons) in Mechanical Engineering
Semester Two Examination 2018/2019
Engineering Principles 2
Module No: AME4063 \& AME4053

Rules of Differentiation

$$
\begin{aligned}
\text { PRODUCT RULE: } & \frac{d}{d x}(f(x) g(x))=f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \\
\text { QUOTIENT RULE: } & \frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g(x)^{2}} \\
\text { CHAIN RULE: } & \frac{d}{d x}(f(g(x)))=g^{\prime}(x) \cdot f^{\prime}(g(x))
\end{aligned}
$$

Rules of Integration

$$
\begin{aligned}
\text { INTEGRATION BY PARTS: } & \int_{x=a}^{b} f(x) g^{\prime}(x) d x=[f(x) g(x)]_{x=a}^{b}-\int_{x=a}^{b} f^{\prime}(x) g(x) d x \\
\text { INTEGRATION BY SUBSTITUTION: } & \int_{x=a}^{b} F(g(x)) g^{\prime}(x) d x=\int_{u=g(a)}^{g(b)} F(u) d u \\
& \text { with the substitution } u=g(x) \text { and where } F^{\prime}(x)=f(x) .
\end{aligned}
$$

Local Maxima and Minima of a Function

A curve defined by $y=f(x)$ in terms of some function f has stationary points where $f^{\prime}(x)=0$. These are then classified using the Second Derivative Test:

Let $x=a$ be a stationary point of $f(x)$ then:

$$
\begin{array}{lll}
f^{\prime \prime}(a)>0 & \Longrightarrow & x=a \text { is a local minimum } \\
f^{\prime \prime}(a)<0 & \Longrightarrow & x=a \text { is a local maximum } \\
f^{\prime \prime}(a)=0 & \Longrightarrow & \text { the test is inconclusive. }
\end{array}
$$

School of Engineering
BEng (Hons) in Mechanical Engineering
Semester Two Examination 2018/2019
Engineering Principles 2
Module No: AME4063 \& AME4053

Differential Equations

First-order ODEs:

The following denote methods of solving first-order ordinary differential equations:
DIRECT INTEGRATION

$$
y^{\prime}=f(x) \quad \Longrightarrow \quad y=\int f(x) d x
$$

SEPARATION OF VARIABLES

$$
y^{\prime}=f(x) \cdot g(y) \quad \Longrightarrow \quad F(y)=\int f(x) d x \quad \text { where } \quad F^{\prime}(y)=\frac{y^{\prime}}{g(y)}
$$

INTEGRATING FACTOR

$$
y^{\prime}+f(x) y=g(x) \quad \Longrightarrow \quad y=\frac{1}{M(x)} \int M(x) g(x) d x
$$

where $M(x)=\exp \left(\int f(x) d x\right)$ is the integrating factor.

Second-order ODEs

The solution to the second-order homogeneous differential equation with constant coefficients:

$$
y^{\prime \prime}+A y^{\prime}+B=0
$$

is determined by the roots of its auxiliary equation:

Case	Roots	General Solution
I	Two real: M_{1}, M_{2}	$y=A e^{M_{1} x}+B e^{M_{2} x}$
II	One real (double) root: M	$y=(A+B x) e^{M x}$
III	Complex conjugate pair: $P \pm i \omega$	$y=(A \cos (\omega x)+B \sin (\omega x)) e^{P x}$

END OF FORMULA SHEETS

