UNIVERSITY OF BOLTON

WESTERN INTERNATIONAL COLLEGE FZE
 BENG (HONS) MECHANICAL ENGINEERING

SEMESTER TWO EXAMINATION 2018/2019

ENGINEERING PRINCIPLES 2

MODULE NO: AME4063

Date: Wednesday 22nd May 2019

INSTRUCTIONS TO CANDIDATES:
There are SIX questions.

Answer Two Questions from Part A and Two Questions from Part B.

All questions carry equal marks.
Marks for parts of questions are shown in brackets.

Electronic calculators may be used provided the data and program storage memory is cleaned prior to the examination.

CANDIDATES REQUIRE:

PART A

Q1.
a) Differentiate the following questions:
i) $y=\ln \sqrt{x^{2}-1}$
ii) $y=\sqrt{x^{3}} \ln 3 x$
b) A particle move in a straight line from a fixed point given by

$$
x=4 t+\ln (1-t)
$$

where ' \boldsymbol{x} ' is the distance travelled in meters and ' t ' is the time taken in seconds. Determine,
i) The initial velocity and acceleration
ii) The velocity and acceleration after 1.5 s
c) A can manufacturing company requires to maximize the volume of a can using a given surface area of metal sheet. The surface area of the can including the top and bottom surfaces is $400 \mathrm{~cm}^{2}$. Determine the Height (H) in cm and Radius (R) in cm so that the volume is maximum.

University of Bolton
Western International College FZE
BEng (Hons) Mechanical Engineering
Semester 2 Examination 2018/2019
Engineering Principles 2
Module No. AME4063

Q2.
a) Integrate the following:
i) $\quad \int_{0}^{2} x \sqrt{\left(2 x^{2}+1\right)} \mathrm{dx}$ (3 marks)
ii) $\quad \int 2 \cot ^{2} 2 t$ (3 marks)
b) A tank of water is in the shape of a cone of height 20 meters and radius of 8 meters. If the tank is filled with water how much work is required to pump all of the water to the top of the tank. Assume that the density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$.
(13 marks)
c) An automatic machine produces, on average, 97% of its components to be of within the tolerance required. In a sample of ten components from this machine, determine the probability of having
i) fewer than two components outside of the tolerance required.
(3 marks)
ii) more than two items be defective, assuming a binomial distribution.

University of Bolton
Western International College FZE
BEng (Hons) Mechanical Engineering
Semester 2 Examination 2018/2019
Engineering Principles 2
Module No. AME4063

Q3.

a) The differential equation relating the Tension \mathbf{T}, contact angle $\boldsymbol{\theta}$ and Coefficient of friction $\boldsymbol{\mu}$ is given by

$$
\frac{d T}{d \theta}=\mu \mathrm{T}
$$

If $\theta=0$ when $T=150 \mathrm{~N}$ and $\mu=0.30$.
Determine,
i) Tension (T) at the point of slipping when $\theta=2$ radians (7 marks)
ii) Contact angle (θ) when the tension $\mathrm{T}=300 \mathrm{~N}$
b) Determine the particular solution of angular displacement θ, given that it follows the equation,

$$
\frac{d \theta}{d t}=2 e^{3 t-2 \theta}
$$

Given that, when time $t=0, \theta=0$

University of Bolton
Western International College FZE
BEng (Hons) Mechanical Engineering
Semester 2 Examination 2018/2019
Engineering Principles 2
Module No. AME4063

PART B

Q4.
A rolled steel joist of I section has the dimensions as shown in Figure Q4. Determine the following:

Figure Q4. I section
i. the centroid of the section
ii. the moment of inertia of the section about the 'xx' axis through the centroid.
iii. the moment of inertia of the section about the 'yy' axis through the centroid.
iv. the radius of gyration
v. If this beam of I section carries a uniformly distributed load of $40 \mathrm{kN} / \mathrm{m}$ rum on a span of 10 m , find maximum stress produced due to bending in $x x$ and yy direction.

University of Bolton
Western International College FZE
BEng (Hons) Mechanical Engineering
Semester 2 Examination 2018/2019
Engineering Principles 2
Module No. AME4063

Q5.

a) A hollow steel shaft transmits 200 kW of power at 150 rpm . The total angle of twist in a length of 5 m of the shaft is 3°. The permissible shear stress is 60 MPa and the modulus of rigidity of the material is 80 GPa .

Determine the following:
i. the inner diameter of the shaft.
ii. the outer diameter of the shaft.
iii. Differentiate between polar moment of inertia of solid and hollow shafts.
iv. Define Torsion and Bending equation.
(2 marks)
b) A spring loaded with 4 kg weight is extended 600 mm when in equilibrium. The mass is pulled vertically downward through a further distance of 280 mm and is then released from rest so that it oscillates about the equilibrium position. Determine:
i. the stiffness constant ' k ' of the spring and time of oscillation in seconds.
ii. the velocity and acceleration when the weight is at a distance of 120 mm below its equilibrium position.
c) A car with wheel diameter 75 cm is running at 72 kmph . The car is brought to rest with uniform retardation and it covers 20 metres. Calculate the angular velocity of wheel about its axis of rotation.Also determine the angular retardation of the wheel.

University of Bolton
Western International College FZE
BEng (Hons) Mechanical Engineering
Semester 2 Examination 2018/2019
Engineering Principles 2
Module No. AME4063

Q6.
a) Define the following terms:
i) coefficient of friction
ii) angle of friction
iii) angle of repose
b) A body requires a pull of 30 N and a push of 36 N to just move it over a rough horizontal plane. Both the pull and the push are inclined at 25° with the horizontal as shown in Figure Q6b.Compute the following:
i) Weight of the body.
ii) Coefficient of friction

(a) Body subjected to a pull

(b) Body subjected to a push

Figure Q6b. Given block

END OF QUESTIONS

Formula sheet starts over the page

University of Bolton
Western International College FZE
BEng (Hons) Mechanical Engineering
Semester 2 Examination 2018/2019
Engineering Principles 2
Module No. AME4063

FORMULA SHEET

Vectors

$\underline{A} \cdot \underline{B}=|\underline{A}||\underline{B}| \cos \theta$

Determinants

$\frac{x}{D_{x}}=\frac{-y}{D_{y}}=\frac{z}{D_{z}}=\frac{-1}{D}$

Matrices

$A^{-1}=\frac{\operatorname{adj} A}{D}$
$X=A^{-1} B$

Series

$U_{n}=a+(n-1) d$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$U_{n}=a r^{n-1}$
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$
$S_{\infty}=\frac{a}{1-r}$
$U_{n}=a+(n-1) d+\frac{1}{2}(n-1)(n-2) C$
Binomial Distribution
$(q+p)^{n}=q^{n}+n q^{n-1} p+\frac{n(n-1)}{2!} q^{n-2} p^{2}+\frac{n(n-1)(n-2)}{3!} q^{n-3} p^{3}+\cdots$

University of Bolton
Western International College FZE
BEng (Hons) Mechanical Engineering
Semester 2 Examination 2018/2019
Engineering Principles 2
Module No. AME4063

Partial Fractions

$\frac{F(x)}{(x+a)(x+b)}=\frac{A}{(x+a)}+\frac{B}{(x+b)}$
$\frac{F(x)}{(x+a)(x+b)^{2}}=\frac{A}{(x+a)}+\frac{B}{(x+b)}+\frac{C}{(x+b)^{2}}$
Trigonometry
$\sin 2 x=2 \sin x \cos x$
$\cos 2 \mathrm{x}=\cos ^{2} \mathrm{x}-\sin ^{2} \mathrm{x}$
$\cos 2 \mathrm{x}=2 \cos ^{2} \mathrm{x}-1$
$\cos 2 x=1-2 \sin ^{2} x$
$\tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}$
$\sin ^{2} x+\cos ^{2} x=1$
$\tan ^{2} x+1=\sec ^{2} x$
$\operatorname{cosec}^{2} x=1+\cot ^{2} x$

Differentiation

$\mathrm{y}=\mathrm{uv} \quad \frac{d y}{d x}=\mathrm{u} \frac{d v}{d x}+v \frac{d u}{d x} \quad$ (Product Rule)
$\mathrm{y}=\frac{u}{v} \quad \frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}} \quad$ (Quotient Rule)
$\frac{d y}{d x}=\frac{d y}{d t} x \frac{d t}{d x}$ (ChainRule)

University of Bolton
Western International College FZE
BEng (Hons) Mechanical Engineering
Semester 2 Examination 2018/2019
Engineering Principles 2
Module No. AME4063

Integration
$\int u \frac{d v}{d x} d x=u v-\int v \frac{d u}{d x} d x \quad$ (By parts)
$\int \frac{f^{1}(x)}{f(x)} d x=\ln |f(x)|+\mathrm{c}$

Differential equations

Linear differential equation
$d y / d x+P y=Q$
Integrating factor is $e^{\int P d x}$
Solution is $\mathrm{y} \times I F=\int Q \times I F d x$

Centroid and $2^{\text {nd }}$ Moments of Area

Rectangle $\quad \bar{X}=(b / 2), \bar{Y}=(d / 2), A=b d \quad I_{X X}=\frac{\mathrm{bd}^{3}}{12} \quad I_{Y y}=\frac{\mathrm{db}^{3}}{12}$
Circle $\quad \mathrm{xx}=\frac{\pi R^{4}}{4} \quad$ Polar $\mathrm{J}_{\text {solid }}=\frac{\pi D^{4}}{32} \quad \mathrm{~J}_{\text {hollow }}=\pi\left(\mathrm{D}^{4}-\mathrm{d}^{4}\right) / 32$
For composite sections
$\overline{\mathrm{X}}=\frac{\Sigma A i X i}{\Sigma A i}$
$\overline{\mathrm{Y}}=\frac{\Sigma A i Y i}{\Sigma A i}$
Parallel Axis Theorem
$I_{\mathrm{xx}}=\mathrm{I}_{\mathrm{GG}}+\mathrm{Ah}^{2}$
$I_{x x}=\left(I_{x x}\right)_{i}+\Sigma A_{i}\left(Y_{i}-Y\right)^{2}$
$I_{y y}=\left(I_{y Y}\right)_{i}+\Sigma A_{i}\left(X_{i}-X\right)^{2}$

University of Bolton
Western International College FZE
BEng (Hons) Mechanical Engineering
Semester 2 Examination 2018/2019
Engineering Principles 2
Module No. AME4063

Energy and Momentum

Potential Energy $=$ mgh
Kinetic Energy

$$
\text { Linear }=1 / 2 \mathrm{mv}^{2}
$$

Angular $=1 / 21 \omega^{2}$
Momentum

Angular $=1 \omega$
Vibrations
Linear Stiffness $k=\frac{F}{\delta}$

Circular frequency $\omega_{n}=\sqrt{\frac{k}{m}}$
Frequency $f_{n}=\frac{\omega_{n}}{2 \pi}=\frac{1}{T_{n}}$
$x=r \cos \omega t$
$v=-\omega \sqrt{r^{2}-x^{2}}=-\omega r \sin \omega t$
$a=-\omega^{2} x$
$f=\frac{1}{T}$
$T=\frac{2 \pi}{\omega}$
$\mathrm{M} / \mathrm{I}=\sigma / \mathrm{y}=\mathrm{E} / \mathrm{R}$
$\mathrm{P}=2 \pi \mathrm{~N} T$
$\mathrm{T} / \mathrm{J}=G \theta / L=\tau / \mathrm{r}$
$F=\mu N$

