UNIVERSITY OF BOLTON

WESTERN INTERNATIONAL COLLEGE FZE

BENG (HONS) MECHANICAL ENGINEERING

SEMESTER TWO EXAMINATION 2018/2019

ENGINEERING PRINCIPLES 1

MODULE NO: AME4062

Date: Thursday 30th May 2019

INSTRUCTIONS TO CANDIDATES:

CANDIDATES REQUIRE:

Time: 10:00 AM - 12:00 PM

There are SIX questions.

Answer Two Questions from Part A and Two Questions from Part B.

All questions carry equal marks.
Marks for parts of questions are shown in brackets.

Electronic calculators may be used provided the data and program storage memory is cleaned prior to the examination.

Formula Sheet (attached)

University of Bolton
Western International College FZE
BEng (Hons) Mechanical Engineering
Semester 2 Examination 2018/2019
Engineering Principles 1
Module No. AME 4062

PART A

Q1.
a) In a mechanical system, deceleration ' a ' in m / s^{2}, velocity ' v ' in m / s and distance ' \mathbf{x} ' in m, are related by simultaneous equation given below:

$$
\begin{gathered}
x+2 v+3 a=-7.8 \\
2 x+5 v-a=1.4 \\
5 x-v+7 a=3.5
\end{gathered}
$$

Solve using determinant method to find the acceleration, velocity, and distance.
b) Use Partial fractions to expand:

$$
\frac{2 x^{2}+7 x-17}{(x-1)(x-2)(x+3)}
$$

Q2.
a) Use partial fractions to expand: $\frac{8 x-28}{x^{2}-6 x+8}$
b) The $1^{\text {st }}, 10^{\text {th }}$ and the last terms of an arithmetic progression are $9,40.5$ and 425.5 respectively. Find
i) the number of terms
ii) sum of all terms
iii) the $75^{\text {th }}$ term in the series

University of Bolton
Western International College FZE
BEng (Hons) Mechanical Engineering
Semester 2 Examination 2018/2019
Engineering Principles I
Module No. AME 4062

Q2 Continued.

b) Forces of $F_{1}=40 \mathrm{~N}$ at 45° and $F_{2}=30 \mathrm{~N}$ at 125° acting at one starting point.

Determine the vector sum ' $F_{1}+F_{2}$ 'and vector difference ' \mathbf{F}_{1} - \mathbf{F}_{2} '. Use appropriate figures to represent your answers.

Q3.
a) If $x=3(\cos \pi / 4+j \sin \pi / 4)$ find the value of x^{5}
b) A drilling machine is to have 6 speeds ranging from $50 \mathrm{rev} / \mathrm{min}$ to $750 \mathrm{rev} / \mathrm{min}$. If the speeds form a geometric progression, determine their values, each correct to the nearest whole number.
c) In a system of forces, the relationship between two forces F_{1} and F_{2} is given by

$$
\begin{gathered}
3 F_{1}+2 F_{2}+6=0 \\
2 F_{1}+4 F_{2}+12=0
\end{gathered}
$$

Use determinants to solve for F_{1} and F_{2}

University of Bolton
Western International College FZE
BEng (Hons) Mechanical Engineering
Semester 2 Examination 2018/2019
Engineering Principles I
Module No. AME 4062

PART B

Q4.

A rectangular block $250 \mathrm{~mm} \times 100 \mathrm{~mm} \times 80 \mathrm{~mm}$ shown in Figure Q4 is subjected to axial loads as follows:

480 kN tensile in the direction of its length
100 kN compressive on the $250 \mathrm{~mm} \times 100 \mathrm{~mm}$ faces
900 kN tensile on $250 \mathrm{~mm} \times 80 \mathrm{~mm}$ faces.

Figure Q4. rectangular block
Determine the following:
a) Assuming Poisson's ratio as 0.25 , find in terms of modulus of elasticity of the material E, the strains in the direction of each force.
(12 marks)
b) If modulus of elasticity $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, find the values of the modulus of rigidity and bulk modulus for the material of the block.
(8marks)
c) Calculate the change in volume of the block due to loading specified above.

University of Bolton
Western International College FZE
BEng (Hons) Mechanical Engineering
Semester 2 Examination 2018/2019
Engineering Principles I
Module No. AME 4062

Q5.
a) A stepped member $A B C D$ is subjected to point loads P_{1}, P_{2}, P_{3} and P_{4} as shown in Figure Q5a.

Calculate the force P_{2} necessary for equilibrium if $P_{1}=10 \mathrm{kN}, P_{3}=40 \mathrm{kN}$ and $\mathrm{P}_{4}=16 \mathrm{kN}$. Taking modulus of elasticity as $2.05 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, determine the total elongation of the member.

(15 marks)
Figure Q5a. stepped member
b) Three forces are acting on a hook as shown in Figure Q5b.

Determine the following:
I. The resultant force in magnitude
II. The resultant force in direction

Figure Q5b. Forces on a hook
Total 25 marks

University of Bolton
Western International College FZE
BEng (Hons) Mechanical Engineering
Semester 2 Examination 2018/2019
Engineering Principles I
Module No. AME 4062

Q6.

A simply supported beam carries concentrated lateral loads at C, D, E and a uniformly distributed lateral load over the length AE as shown in Figure Q6.
Determine:
i. Reaction loads at the support
ii. Construct the shear force diagram for the beam
iii. Construct the bending moment diagram for the beam
iv. Find the position of maximum bending moment.

FigQ6.
Figure Q6.Simply supported beam

Total 25 marks

END OF QUESTIONS

University of Bolton
Western International College FZE
BEng (Hons) Mechanical Engineering
Semester 2 Examination 2018/2019
Engineering Principles 1
Module No. AME 4062

FORMULA SHEET

Determinants

$\frac{x}{D_{x}}=\frac{-y}{D_{y}}=\frac{z}{D_{z}}=\frac{-1}{D}$

Matrices

$A^{-1}=\frac{\operatorname{adj} A}{D}$
$X=A^{-1} B$

Series

$U_{n}=a+(n-1) d$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$U_{n}=a r^{n-1}$
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$
$S_{\infty}=\frac{a}{1-r}$
$U_{n}=a+(n-1) d+\frac{1}{2}(n-1)(n-2) C$

Binomial

$(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+$
Validity $|\mathrm{x}|<1$

University of Bolton
Western International College FZE
BEng (Hons) Mechanical Engineering
Semester 2 Examination 2018/2019
Engineering Principles I
Module No. AME 4062

Partial Fractions

$\frac{F(x)}{(x+a)(x+b)}=\frac{A}{(x+a)}+\frac{B}{(x+b)}$
$\frac{F(x)}{(x+a)(x+b)(x+c)}=\frac{A}{(x+a)}+\frac{B}{(x+b)}+\frac{C}{(x+c)}$
$\frac{F(x)}{(x+a)\left(x^{2}+b\right)}=\frac{A}{(x+a)}+\frac{B x+C}{\left(x^{2}+b\right)}$

De Moivre's Theorem

$(\cos \theta+j \sin \theta)^{n}=\cos n \theta+j \sin n \theta$

Stress

Normal $\sigma=\frac{P}{A} \quad \mathrm{~A}=\mathrm{x}$-sectional area
Shear $\quad \tau=\frac{P}{A} \quad \mathrm{~A}=$ shear area

Strain

Normal $\quad \varepsilon=\frac{\delta \ell}{\ell}$
Shear $\quad \gamma=\frac{x}{y}$ (Angular Displacement in rads in direction of F)

Compound Bars

$P=P_{1}+P_{2}$
$P=\sigma_{1} A_{1}+\sigma_{2} A_{2}$
$\frac{\sigma_{1}}{E_{1}}=\frac{\sigma_{2}}{E_{2}}$,

University of Bolton
Western International College FZE
BEng (Hons) Mechanical Engineering
Semester 2 Examination 2018/2019
Engineering Principles I
Module No. AME 4062

Elastic Constants

$E=\frac{\sigma}{\varepsilon}, \quad G=\frac{\tau}{\gamma}$

$$
\varepsilon_{x}=\frac{\sigma_{x}}{E}-v \frac{\sigma_{y}}{E}-v \frac{\sigma_{z}}{E}
$$

$$
\varepsilon_{y}=\frac{\sigma_{y}}{E}-v \frac{\sigma_{x}}{E}-v \frac{\sigma_{z}}{E}
$$

$$
\varepsilon_{z}=\frac{\sigma_{z}}{E}-v \frac{\sigma_{x}}{E}-v \frac{\sigma_{y}}{E}
$$

$$
\varepsilon_{v}=\varepsilon_{x}+\varepsilon_{y}+\varepsilon_{z}
$$

$$
\varepsilon_{v}=\frac{1-2 v}{E}\left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right)
$$

$$
\varepsilon_{v}=\frac{\delta V}{V}
$$

Compressibility

Sine Rule: $\quad \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine Rule: $a^{2}=b^{2}+c^{2}-2 b c \cos A$

