UNIVERSITY OF BOLTON

SCHOOL OF SPORT AND BIOLOGICAL SCIENCES
 SPORT REHABILITATION WITH FOUNDATION PATHWAY

 SEMESTER ONE EXAMINATIONS 2018/2019 SPORTS BIOMECHANICSMODULE NO. SRB3009

Date: Friday 18 January 2019 Time: 10.00 am - 12.00 pm

INSTRUCTIONS TO CANDIDATES:
There are 100 Marks on the paper.
Answer all questions.

Sport and Biological Sciences
Sport Rehabilitation with Foundation Pathway
Semester One Examinations 2018/2019
Sports Biomechanics
Module No. SRB3009

1. Briefly describe the Gait cycle in walking.

4 marks
2. How would you assess the following athletic qualities in a laboratory setting:
a. Horizontal jumping distance.
b. Jumping force
c. Bicep tricep ratio
d. Stride length in sprinting
e. Angle of hip flexion during the gait cycle

10 Marks
3. Name the plane of motion indicated in each diagram

3 Marks

4. Define the following terms:
a. Kinetics

2 Marks
b. Kinematics

Sport and Biological Sciences
Sport Rehabilitation with Foundation Pathway
Semester One Examinations 2018/2019
Sports Biomechanics
Module No. SRB3009
5. Describe the potential joint motion available at the following joints:
a. Elbow

2 Marks
b. Shoulder joint

3 Marks
c. Radio-UIna joint

2 Marks
d. Ankle (Talocrural) joint

2 Marks
Calculate the following:
6. A 200 m sprinter runs his event in 20.11 seconds. What is the average speed of the sprinter?

1 Mark
7. If a runner travels at $3.6 \mathrm{~m} / \mathrm{s}$ for 4 minutes, what is the distance covered?

1 Mark
8. A footballer covers 14000 m during a match that lasts 90 minutes. What is the average speed of movement of the footballer?

1 Mark
Using equations of motion: $\quad v=u+a t \quad$ or $\quad v^{2}=u^{2}+2 a d$
9. Find the final velocity reached if a cyclist accelerates from a stationary start at a constant rate of $2.44 \mathrm{~m} / \mathrm{s}^{2}$ for 4 seconds.

Please turn the page

Sport and Biological Sciences
Sport Rehabilitation with Foundation Pathway
Semester One Examinations 2018/2019
Sports Biomechanics
Module No. SRB3009
10. Find the height of a ball thrown straight up at initial velocity of $15.4 \mathrm{~m} / \mathrm{s}$.

3 Marks
11. Describe 3 characteristics of a vector.

3 Marks
12 Detail the importance of the study of biomechanics in the fields of sport science and rehabilitation.

4 Marks

13 Using Pythagoras theorem, calculate the following:

3 Marks

9

14 A hiker walks south for 385 m , then west for 713 m .
a. What is the distance covered?
b. What is the displacement covered?

1 Mark

3 Marks

Sport and Biological Sciences
Sport Rehabilitation with Foundation Pathway
Semester One Examinations 2018/2019
Sports Biomechanics
Module No. SRB3009

15 Explain the difference between Speed and Velocity.
1 Mark
16 Using trigonometry, calculate the following:
4 Marks

17 A rugby ball is thrown at $12 \mathrm{~m} / \mathrm{s}$ at an angle of 39 degrees to the horizontal. Using trigonometry, calculate the velocity of the ball in the:
a. Vertical direction

3 Marks
b. Horizontal direction

3 Marks
18 Describe Newton's three laws and describe a practical example in each case.
6 Marks
19 What is the difference between weight and mass?
20 What is ground reaction force?
2 Marks

2 Marks

21 What is the weight of a female athlete of mass 74 kg ?
1 Mark
Please turn the page

Sport and Biological Sciences
Sport Rehabilitation with Foundation Pathway
Semester One Examinations 2018/2019
Sports Biomechanics
Module No. SRB3009
22 If a rugby player of 101 kg standing on the ground, supports a barbell of 55 kg on his back, what would be the ground reaction force?

2 Marks
23 What is momentum? Provide practical examples demonstrating how momentum can change in sport and exercise

3 Marks

24 Calculate the momentum of a rugby player of 100 kg running at $6 \mathrm{~m} / \mathrm{s}$.
1 Mark

25 Who has the greatest momentum:
a. A 90 kg sprinter running at $6 \mathrm{~m} / \mathrm{s}$ or
b. A 80 kg distance runner running at $7 \mathrm{~m} / \mathrm{s}$?

2 Marks
26 A high jumper produces an average vertical jump force of 1200 N over a time period of 0.3 seconds. Calculate the impulse of the jump.

1 Mark

27 Balance the following lever system:
Block A is 5 kg positioned at 10 m from the pivot point. Block B is 8 kg . How far should it be placed from the pivot point to balance the system?

2 Marks

Please turn the page

Sport and Biological Sciences
Sport Rehabilitation with Foundation Pathway
Semester One Examinations 2018/2019
Sports Biomechanics
Module No. SRB3009
28 Using the formula Torque = force \boldsymbol{x} distance:
When holding the arm at 90° with a 7 kg dumbbell,
a. Calculate the torque in the shoulder joint if the dumbbell is 0.62 m from the shoulder joint

1 Mark
b. Calculate the force the deltoid muscle has to provide if its insertion point is 0.22 m from the shoulder joint.

c. Describe centre of gravity principles in relation to balance and stability, using examples below to explain your answer.

6 Marks

Question continued on next page

Please turn the page

Page 8 of 8

Sport and Biological Sciences
Sport Rehabilitation with Foundation Pathway
Semester One Examinations 2018/2019
Sports Biomechanics
Module No. SRB3009
d. Find the overall position centre of gravity (CoG) of the following body. Express your answer as a number relating to the scale below, e.g. the CoG is at position 5.2

The following information is known:
Gravitational force of larger segment $=55 \mathrm{~N}$, position of CoG is at 3.0
Gravitational force of smaller segment $=35 \mathrm{~N}$, position of CoG is at 6.0

5 Marks

