UNIVERSITY OF BOLTON

SCHOOL OF ENGINEERING

BEng (Hons) AUTOMOTIVE PERFORMANCE ENGINEERING

SEMESTER 1: EXAMINATION

ENGINEERING MATHEMATICS II

MODULE NUMBER: MSP5017

Date: $17^{\text {th }}$ January 2019
Time: 2.00pm - 4.00pm

INSTRUCTIONS TO CANDIDATES:

1. Answer all SIX questions.
2. The examination paper carries a maximum of 100 marks.
3. Maximum marks for parts of each question are shown in brackets.
4. This examination is open book.

School of Engineering
BEng Automotive Performance Engineering
Semester 1: Examination
Engineering Mathematics II
MSP5017

1. Consider the following equation:

$$
e^{-3 x}+2 x^{2}=6
$$

(a) Show there is a solution to the equation on the interval $[1,5]$ of the real line.
(b) Use the method of bisection once to determine an initial approximate solution to the equation.
(c) Using the approximation in (b) as your initial value, use the Newton-Raphson method to find a solution to the equation accurate to 3 significant figures.
2. Consider the following differential equation for $x(t)$:
(*)

$$
\left\{\begin{aligned}
\dot{x}+4 x & =10 e^{-6 t} \\
x(0) & =4
\end{aligned}\right.
$$

where \dot{x} denotes first-order differentiation of x with respect to t.
(a) Show the Laplace transform of (\star) yields:

$$
X(s)=\frac{4 s+34}{s^{2}+10 s+24}
$$

where $X(s)=\mathcal{L}\{x(t)\}$ is the Laplace transform of the function $x(t)$.
(b) Obtain the solution to (\star) by taking a partial fraction decomposition of $X(s)$ and using inverse Laplace transforms.

School of Engineering
BEng Automotive Performance Engineering
Semester 1: Examination
Engineering Mathematics II
MSP5017
3. Consider the following second-order ordinary differential equation for the function $x(t)$:

$$
\left\{\begin{array}{r}
\ddot{x}-3 \dot{x}-4 x=1 \\
x(0)=0 \\
\dot{x}(0)=1
\end{array}\right.
$$

where \dot{x} and \ddot{x} denote first and second-order differentiation of x with respect to t respectively.
(a) Show that the second-order differential equation can be written as the system of first-order ordinary differential equations:

$$
\left\{\begin{aligned}
\dot{y}_{1} & =y_{2} \\
\dot{y}_{2} & =1+3 y_{2}+4 y_{1} \\
y_{1}(0) & =0 \\
y_{2}(0) & =1
\end{aligned}\right.
$$

in terms of two suitably chosen new variables $y_{1}(t), y_{2}(t)$.
(b) Use the method of Laplace transforms to show the system of ordinary differential equations can be written as the system of algebraic equations:

$$
\begin{align*}
s Y_{1}(s)-Y_{2}(s) & =0 \\
-4 Y_{1}(s)+(s-3) Y_{2}(s) & =\frac{s+1}{s} \tag{6marks}
\end{align*}
$$

where $Y_{4}(s)=\mathcal{L}\left\{y_{1}(t)\right\}$ and $Y_{2}(s)=\mathcal{L}\left\{y_{2}(t)\right\}$.
(c) Solve the system of algebraic equations to show that $Y_{1}(s)=\frac{1}{s(s-4)}$.
(d) Take the inverse Laplace transform of $Y_{1}(s)$ to find the solution to the original second-order ordinary differential equation.

School of Engineering
BEng Automotive Performance Engineering
Semester 1: Examination
Engineering Mathematics II
MSP5017
4. Consider the following double integral: $\quad \mathcal{I}=\int_{x=0}^{3}\left(\int_{y=0}^{6-2 x}\left(2 x y+4 e^{y}\right) d y\right) d x$.
(a) Sketch the region of integration.
(b) Change the order of integration in \mathcal{I}, using your diagram to obtain the new limits of integration.
(c) Use either expression for the integral to show that $\mathcal{I}=13+2 e^{6}$.
5. The wave equation in one spatial dimension is given by:

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} u}{\partial t^{2}}
$$

where $u=u(t, x)$ is a function of two variables and v is some positive constant.
(a) Show, by substitution into the wave equation, the following function is a solution:

$$
\begin{equation*}
u(t, x)=\sin (x) \cos (v t)+10 e^{x-v t} \tag{6marks}
\end{equation*}
$$

(b) One method of solving the wave equation is by separation of variables. Explain this method and apply it to the wave equation to reduce the partial differential equation to two ordinary differential equations.
6. Show that conservation of mass of a fluid in one spatial dimension can be written as the continuity equation:

$$
\frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x}(\rho v)=0
$$

where t, x denote time and the spatial co-ordinate respectively; $\rho=\rho(t, x)$ is the mass density of the fluid; and $v=v(t, x)$ is the velocity of the fluid.

