UNIVERSITY OF BOLTON

SCHOOL OF ENGINEERING

BEng (Hons) AUTOMOTIVE PERFORMANCE ENGINEERING

SEMESTER 1: EXAMINATION

ENGINEERING MATHEMATICS

MODULE NUMBER: MSP4017

Date: $15^{\text {th }}$ January 2019
Time: 2.00pm - 4.00pm

INSTRUCTIONS TO CANDIDATES:

1. Answer all EIGHT questions.
2. The examination paper carries a maximum of 100 marks.
3. Maximum marks for parts of each question are shown in brackets.
4. This examination is open book.

School of Engineering
BEng Automotive Performance Engineering
Semester 1: Examination
Engineering Mathematics
MSP4017

1. Let f denote the quadratic function:

$$
f(x)=x^{2}+4 x+8
$$

(a) Show that $x_{1}=-2+2 i$ and $x_{2}=-2-2 i$ are roots of $f(x)=0$.
(b) Plot the roots x_{1}, x_{2} on an Argand diagram.
(c) Simplify $\frac{x_{2}}{x_{1}}$ and write it in the form $a+b i$ for some real numbers a and b.
2. Let x, y be sinusoidal functions defined by

$$
x(t)=5 \cos \left(\omega t+\frac{\pi}{3}\right) \quad \text { and } \quad y(t)=2 \cos \left(\omega t+\frac{\pi}{4}\right) .
$$

Use the method of phasors to combine $x(t)+y(t)$ into a single sinusoidal function.
3. Let $\underline{v}, \underline{w}$ be two vectors defined by

$$
\underline{v}=\left(\begin{array}{l}
4 \\
\lambda \\
1
\end{array}\right) \quad \text { and } \quad \underline{w}=\left(\begin{array}{c}
-5 \\
3 \\
2
\end{array}\right)
$$

with respect to the standard basis in Cartesian coordinates on \mathbb{R}^{3}.
(a) Find the value of λ for which the vectors \underline{v} and \underline{w} are perpendicular.
(b) With $\lambda=1$, find a unit vector in \mathbb{R}^{3} that is perpendicular to both \underline{v} and \underline{w}.
(c) With $\lambda=2$, find the angle between the vectors \underline{v} and \underline{w}.

School of Engineering
BEng Automotive Performance Engineering
Semester 1: Examination
Engineering Mathematics
MSP4017
4. (a) Let f be the function defined by $f(x)=3 x^{2}+2 x-1$. Find the derivative of f from first principles.
(4 marks)
(b) Calculate the first derivative of the functions f, g, h defined by the following:
(i) $f(x)=x^{2} \sin (3 x)$
(ii) $g(x)=\sqrt{9-x^{2}}$
(iii) $h(x)=\frac{\cos (3 x)}{x^{2}+6}$
5. Calculate the following definite integrals:
(a) $\int_{x=0}^{\frac{\pi}{4}} 8 \cos (2 x) d x$
(b) $\int_{x=0}^{1} 12 x e^{-6 x} d x$
(c) $\int_{x=0}^{2} 2 x e^{1-2 x^{2}} d x$ using the substitution $u=1-2 x^{2}$.
6. (a) Let $\left(a_{k}\right)$ be a sequence defined by $a_{k}=3 k-1$.
(i) Write down the first 5 terms of the sequence $\left(a_{k}\right)$.
(ii) Calculate $\sum_{k=1}^{20} a_{k}$.
(b) Let f be the function defined by $f(x)=e^{-2 x}$. Write down the third-order Maclaurin series expansion of $f(x)$.
(c) Use a generalised binomial expansion to find a second-order rational approximation of $\sqrt{27}$.

School of Engineering
BEng Automotive Performance Engineering
Semester 1: Examination
Engineering Mathematics
MSP4017
7. Headlight bulbs are made by a machine and the lifespan of 11 such bulbs are recorded:

Lifetime (hours)	92	64	86	77	91	76	55	66	85	79	87

(a) Find the mean lifetime of a bulb made by the machine.
(b) Find the standard deviation of the data.
(c) Draw a box-and-whiskers plot displaying the data in the table above.
8. (a) The probability a component is manufactured to an acceptable standard is 0.47 . Twelve components are picked at random. Calculate the probability that:
(i) five are acceptable;
(ii) more than ten are acceptable.
(b) A radar unit is used to measure speeds of cars on a motorway. The speeds are normally distributed with a mean of 62 mph and a standard deviation of 10 mph . What is the probability that a car selected at random will be travelling:
(i) between 60 and 70 mph ;
(ii) more than 80 mph .

