UNIVERSITY OF BOLTON

CREATIVE TECHNOLOGIES

BSC (HONS) GAMES PROGRAMMING

SEMESTER ONE EXAMINATION 2018/2019

GAMES MATHEMATICS

MODULE NO: GAP4000

Date: Thursday $17^{\text {th }}$ January 2019
Time: 10:00-12:00

INSTRUCTIONS TO CANDIDATES:

There are EIGHT questions on this examination paper.

Section A - Answer ALL FIVE questions.

Section B - Answer TWO questions.

Calculators may be used for this examination.

There is a formula sheet at the back of the examination paper.

The total marks are 70.

Creative Technologies
BSc (Hons) Games Programming
Semester One Examination 2018/2019
Games Mathematics
Module No: GAP4000
Section A (30 Marks) - Please answer ALL questions in Section A
A1. If matrix $A=\left[\begin{array}{cc}1.5 & 0 \\ 0 & 1.5\end{array}\right]$ and matrix $B=\left[\begin{array}{lll}0 & 4 & 2 \\ 0 & 0 & 3\end{array}\right]$
i) Evaluate, where possible:
[10 marks]
a) $\mathrm{A}-\mathrm{B}$
b) A^{-1}
c) $A B$
d) BA
ii) If matrix B represented the coordinates of a triangle, what transformation would matrix A 'produce' on the coordinates in matrix B?

A2. Within a computer game, a sprite is repositioned every 20ms. Each time, the sprite is moved 8 pixels to the left and 5 pixels up. If the sprite is initially at coordinate: $(3,-1)$, find the equation of the straight line, in the form $y=m x+c$, along which the sprite appears to move.
[5 marks]

A3. Calculate the values for x, where quadratic equation: $6 x^{2}+2 x-4=0$, using the quadratic formula, $\quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.

A4. Within a computer game, the centre of a Player object's x and y position is at: $(-2.1,1.1)$ and the centre of an Enemy object's x and y position is at: $(1.5,-3.8)$. What is the distance between the object centres, to 2 decimal places of accuracy?

A5. A function representing the position of an object within a computer game, is given by: $f(x)=x^{2}+6$. Calculate the following:
a) $f(3)$
b) $f(-2)$
c) $f(x+4)$
d) $f^{\prime}(x)$

Creative Technologies
BSc (Hons) Games Programming
Semester One Examination 2018/2019
Games Mathematics
Module No: GAP4000
Section B (40 marks) - Answer TWO questions from Section B
Each question is worth 20 marks
B1 a) Convert the following binary numbers to hexadecimal:
i) 1000111101011101
ii) 0100101001111011
[2 marks]
b) Convert the following decimal numbers to hexadecimal:
i) 129
ii) 213
[2 marks]
c) Convert the following hexadecimal numbers to decimal:
i) 3 C 2
ii) F03
[2 marks]
d) Determine the 2s complement of the binary number:
i) 1001
[2 marks]
ii) Use the answer in i) to, in binary numbers, calculate the subtraction: 11102-10012
[3 marks]
e) Input options for a menu system, in a computer game, are to be stored in a variable named inputOptions, which is of 8 bit size. The following input options are stored as hexadecimal constants:

Mouse $=0 \times 01$
Keyboard $=0 \times 02$
Assuming variable inputOptions is initially set to 0 .
i) Using pseudo code, or equivalent, show how to use an appropriate operator to set the Mouse input option on.
[2 marks]
ii) Using pseudo code, or equivalent, use an appropriate operator(s) to set the Keyboard and Mouse input options on.
[3 marks]
iii) Using pseudo code, or equivalent, use an appropriate selection statement, and operator, to check that the Mouse option is on.
[4 marks]

Creative Technologies
BSc (Hons) Games Programming
Semester One Examination 2018/2019
Games Mathematics
Module No: GAP4000

Section B continued....

B2 a) Differentiate the following, with respect to x :
i) $y=-3 x^{5}$
ii) $y=-4 x^{2}-4 x+6$
iii) $y=2 x^{-6}+(x+3)^{2}$
iv) $y=7 \sqrt{x^{7}}$
v) $\mathrm{y}=\frac{1}{5 x^{4}}-5 \sin (x)$
[12 marks]
b) The velocity of a Non-Player Character, (NPC), in a game is given by: $v=10 t^{2}-8 t+8$. Where v is the velocity in pixels $/ s$ and t is the time in seconds.
i) What is the initial velocity of the NPC and the NPC's velocity after 2 seconds?
[2 marks]
ii) Differentiate to find the acceleration of the NPC, and state what units the acceleration would be in.
[3 marks]
iii) At what point in time would the acceleration change from a negative acceleration to a positive acceleration? Show how you calculated the precise time where the change in acceleration direction occurs.

B3 a) Integrate the following:
i) $\int 3 x^{2} d x$
ii) $\int_{1}^{4} 2 x^{4}-9 d x$
iii) $\int 9 t^{5}-6 t^{3} d t$
iv) $\int_{0.5}^{1} 8 t^{5}+4 t^{-2} d t$
[14 marks]
b) The velocity of a Non-Player Character, (NPC), in a game is given by: $v=4 t^{3}-8 t+6$. Where v is the velocity in Kilometres / hour and t is the time in hours.
i) Integrate the velocity equation to obtain an expression for distance, s , and state what units the distance would be in?
[3 marks]
ii) Using i), or otherwise, calculate how far the NPC travelled between 0.5 and 3 seconds?
[3 marks]

Creative Technologies
BSc (Hons) Games Programming
Semester One Examination 2018/2019
Games Mathematics
Module No: GAP4000

Formula Sheet

Inverse Matrix formula

The inverse of the matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, is given by theformula $A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$

Pythagoras' Theorem

Trigonometric ratios

$$
\text { Sine }(\sin)=\begin{array}{|}
\hline \text { opposite } \\
\text { hypotenuse } \\
\hline
\end{array}
$$

$$
\text { Cosine (cos) }=\frac{\text { adjacent }}{\text { hypotenuse }}
$$

$$
\text { Tangent (tan) }=\frac{\text { opposite }}{\text { adjacent }}
$$

Standard Differentials

$y=f(x)$	$\frac{d y}{d x}$
$y=\operatorname{ax} \mathrm{n}$	$\operatorname{an} x^{\mathrm{n}-1}$
$y=\operatorname{asin}(x)$ (assuming x is in radians)	$\operatorname{acos}(x)$
$y=\operatorname{acos}(x)$ (assuming x is in radians)	$-\operatorname{asin}(x)$

Standard Integrals

$\mathrm{y}=\mathrm{f}(\mathrm{x})$	
$y=\operatorname{ax} \mathrm{n}$	$\frac{a x^{n+1}}{n+1}+c$
$y=\operatorname{asin}(x)$ (assuming x is in radians)	$-\operatorname{acos}(x)+\mathrm{c}$
$y=\operatorname{acos}(x)$ (assuming x is in radians)	$\operatorname{asin}(x)+\mathrm{c}$

