UNIVERSITY OF BOLTON

SCHOOL OF ENGINEERING

MSC SYSTEM ENGINEERING

SEMESTER ONE EXAMINATION 2018/2019

SIGNAL PROCESSING

MODULE NO: EEM7011

Date: Wednesday 16th January 2019 Time: 14:00 – 16:00

INSTRUCTIONS TO CANDIDATES:

There are <u>SIX</u> questions.

Answer <u>ANY</u> FOUR questions.

All questions carry equal marks.

Marks for parts of questions are shown in brackets.

This examination paper carries a total of 100 marks.

All working must be shown. A numerical solution to a question obtained by programming an electronic calculator will not be accepted.

Question 1.

 a) Discuss briefly the conditions necessary for a realisable digital filter to have a linear phase characteristic and the advantage of filters with such characteristics.

[5 marks]

b) An FIR filter has its impulse response, h[n] defined over interval 0 ≤ n ≤ N-1.
Show that if N=8 and h[n] satisfies the following symmetry condition:

$$h[n] = h[N-1-n],$$

the phase provided by the filter is linear in nature whose generic value is given by

Angle
$$H(e^{jw}) = -\frac{N-1}{2}w$$

[20 marks] Total 25 marks

Question 2.

a) Given the Z-transform is given by $x(z) = \sum_{n=-\infty}^{n=+\infty} x(n)z^{-n}$, consider the system given by the following equation:

$$x[n] = \left[\left(\frac{1}{2}\right)^n + \left(\frac{1}{4}\right)^n \right] u(n)$$

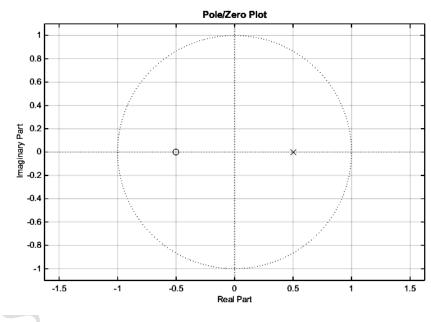
For this system, calculate the Z-transform and its region of convergence (ROC).

[15 marks]

b) From the z function pole-zero diagram shown below (Fig. Q2):

(i)

Derive the transfer function H(z) and comment on the filter stability. [5 marks]



(ii) Find the unit step response impulse response of the filter y(n) for n=0,1, 2, 3 and sketch this response.

[5 marks]

Total 25 marks PLEASE TURN THE PAGE....

Question 3.

a) Discuss the different properties of Tchebycheff, Butterworth and Bessel filters such as: frequency, time and phase responses.

[5 marks]

b) Refer to **Table One**, calculate the component values for a low pass filter of order five (5). **The Butterworth** filter should have 3dB frequency of 50MHz and will be used in a 50Ω circuit. Sketch the design.

Table One

[5 marks]

	2	3	4	5	6
k n↓		_		$ \rightarrow $	-
1	1.4142	1.0000	0.7654	0.6180	0.5176
2	1.4142	2.0000	1.8478	1.6810	1.4142
3		1.0000	1.8478	2.0000	1.9319
4			0.7654	1.6810	1.9319
5		~		0.6810	1.4142
6					0.5176

c) The low pass filter described in section (b) is to be converted to band –pass filter having a bandwidth of 475 MHz to 525MHz. Sketch the new design and calculate the component values.

[10 marks]

d) Show how this filter can be converted or modified to become a band stop filter. [5 marks]

Total 25 marks

Question 4.

a) Find the frequency response for the digital filter with the following transfer function;

$$H(2) = \frac{1+2z^{-1}}{1+5.0z^{-1}-9.0z^{-2}}$$

b) Calculate the magnitude and phase if the sampling rate f_s is 20 KHz and the analogue frequency f is 4 KHz given that $\Omega = 2\pi \frac{f}{f}$

[8 marks]

[4 marks]

[8 marks]

- c) Derive the difference equation.
- d) Show how this difference equation could be implemented using delays and feedback.

[5 marks]

Total 25 marks

Question 5.

A block diagram for an analogue control system is shown in **Figure Q5** below:

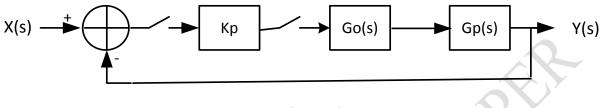


Figure Q5

Where the digital controller is Kp,

and the zero-order hold G_{0} $= \frac{1 - e^{-sT}}{s}$, with the plant G_{α} $= \frac{0.5}{s+0.5}$

a) Determine the closed - loop digital z transfer function for the system. [10 marks]

b) If the gain of the digital controller Kp = 10, determine the range of the sampling interval T that will make the closed loop stable.

[7 marks]

c) If the sampling frequency f = 20 Hz, determine the range of the controller gain Kp which will make the closed loop stable.

[8 marks]

Total 25 marks

Question 6

a) Determine using the BZT method, the transfer function and difference equation for the digital filter which can replace a first order low pass resistive capacitive analogue filter. Assuming a sampling frequency of 150Hz and a cut-off frequency of 30 Hz, develop the transfer functions;

$$H_s = \frac{Y_s}{X_s}$$
 and $H_z = \frac{Y_z}{X_z}$

Assume $s = \frac{T(z-1)}{2(z+1)}$ and pre-warped frequency $Wp = \tan Q$

[10 marks]

b) Sketch the first order low pass filter and its digital replacement with the difference equation shown.

[10 marks]

c) Show how this low pass first order filter can be modified to become a high pass first order filter.

[5 marks]

Total 25 marks

END OF QUESTIONS

Formula sheet over the page....

Formula Sheet

A Table of Basic Laplace and Z transforms

Time f (t)	Laplace F(s)	Z transforms
1. <i>δ</i> [<i>t</i>]	1	1
2. <i>u</i> () <i>t</i>	$\frac{1}{s}$	$\frac{z}{z-1}$
3. <i>t</i>	$\frac{1}{s^2}$	$\frac{Tz}{(z+1)^2}$
4. <i>e</i> ^{-<i>at</i>}	$\frac{1}{s+a}$	$\frac{Z}{Z-e^{-aT}}$
5. $\frac{1}{4^{n} - e^{-a_{t}^{t}}}$	$\frac{1}{\$ \ s + \flat}$	$\frac{2(1-e^{-a})}{4(z)}$
6. sin <i>∞t</i>	$\frac{\omega}{s^2 + \omega^2}$	$\frac{z\sin\omega T}{z^2 - 2z\cos\omega T + 1}$
7. cos <i>∞t</i>	$\frac{s}{s^2+\omega^2}$	$\frac{z^2 - z\cos\omega T}{z^2 - 2z\cos\omega T + 1}$
8. $e^{-at} \sin \omega t$	$\frac{\omega}{\left(s+a^{2}+\omega^{2}\right) }$	$\frac{ze^{-aT}\sin\omega T}{z^2 - 2ze^{-aT}\cos\omega T + e^{-2aT}}$
9. $e^{-at} \cos \omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$	$\frac{\cancel{z} - e^{-at}\cos \omega \cancel{y}}{z^2 - 2ze^{-aT}\cos \omega T + e^{-2aT}}$
10. sinh <i>∞t</i>	$\frac{\omega}{s^2-\omega^2}$	$\frac{z \sinh \omega T}{z^2 - 2z \cosh \omega T + 1}$
11. cosh <i>@t</i>	$\frac{s}{s^2-\omega^2}$	$\frac{\cancel{z} \ z \cosh \ \omega \cancel{f}}{z^2 - 2z \cosh \omega T + 1}$

PASTAA

A Table of Basic Sampled data and Z Transforms

signal x[n] 1. ເເລ	z TransformX(z)	Region of Convergence all z
1 δ[<i>n</i>]	I	all 2
2 <i>u</i> [<i>n</i>]	$\frac{z}{z-1}$	<i>z</i> > 1
3 $\beta^n u[n]$	$\frac{Z}{Z-\beta}$	$ z > \beta $
4 nu[n]	$\frac{z}{\left(z-1\right)^2}$	z >1
5 $\cos(n\Omega)u[n]$	$\frac{z^2 - z\cos\Omega}{z^2 - 2z\cos\Omega + 1}$	z >1
6. $\sin(n\Omega)u[n]$	$\frac{z\sin\Omega}{z^2-2z\cos\Omega+1}$	<i>z</i> >1
7 $\beta^n \cos(n\Omega) u[n]$	$\frac{z^2 - \beta z \cos \Omega}{z^2 - 2\beta z \cos \Omega + \beta}$	$\frac{1}{2}$ $ z > \beta $
8 $\beta^n \sin(n \mathfrak{A})$ ηn	$\frac{\beta z \sin \Omega}{z^2 - 2\beta z \cos \Omega + \beta}$	$ z > \beta $

END OF PAPER