UNIVERSITY OF BOLTON

SCHOOL OF ENGINEERING

MSC SYSTEM ENGINEERING

SEMESTER ONE EXAMINATION 2018/2019

SIGNAL PROCESSING

MODULE NO: EEM7011

Date: Wednesday 16 ${ }^{\text {th }}$ January 2019 Time: 14:00-16:00

INSTRUCTIONS TO CANDIDATES:
There are SIX questions.
Answer ANY FOUR questions.
All questions carry equal marks.
Marks for parts of questions are shown in brackets.

This examination paper carries a total of 100 marks.

All working must be shown. A numerical solution to a question obtained by programming an electronic calculator will not be accepted.

School of Engineering

MSc System Engineering
Semester One Examination 2018/2019
Signal Processing
Module No. EEM7011

Question 1.

a) Discuss briefly the conditions necessary for a realisable digital filter to have a linear phase characteristic and the advantage of filters with such characteristics.
b) An FIR filter has its impulse response, $\mathrm{h}[\mathrm{n}]$ defined over interval $0 \leq \mathrm{n} \leq \mathrm{N}-1$. Show that if $\mathrm{N}=8$ and $\mathrm{h}[\mathrm{n}]$ satisfies the following symmetry condition:

$$
\mathrm{h}[\mathrm{n}]=\mathrm{h}[\mathrm{~N}-1-\mathrm{n}],
$$

the phase provided by the filter is linear in nature whose generic value is given by

$$
\text { Angle } H\left(e^{j w}\right)=-\frac{N-1}{2} w
$$

[20 marks]
Total 25 marks

School of Engineering

MSc System Engineering
Semester One Examination 2018/2019
Signal Processing
Module No. EEM7011

Question 2.

a) Given the Z-transform is given by $\mathrm{x}(\mathrm{z})=\sum_{n=-\infty}^{n=+\infty} x(n) z^{-n}$, consider the system given by the following equation:

$$
x[n]=\left[\left(\frac{1}{2}\right)^{n}+\left(\frac{1}{4}\right)^{n}\right] u(n)
$$

For this system, calculate the Z-transform and its region of convergence (ROC).
[15 marks]
b) From the z function pole-zero diagram shown below (Fig. Q2):
(i) Derive the transfer function $\mathrm{H}(\mathrm{z})$ and comment on the filter stability.
[5 marks]

Fig. Q2
(ii) Find the unit step response impulse response of the filter $y(n)$ for $n=0$, 1, 2, 3 and sketch this response.

School of Engineering
MSc System Engineering
Semester One Examination 2018/2019
Signal Processing
Module No. EEM7011

Question 3.

a) Discuss the different properties of Tchebycheff, Butterworth and Bessel filters such as: frequency, time and phase responses.
[5 marks]
b) Refer to Table One, calculate the component values for a low pass filter of order five (5). The Butterworth filter should have 3 dB frequency of 50 MHz and will be used in a 50Ω circuit. Sketch the design.
[5 marks]
Table One

$k \quad n \downarrow$	$\rightarrow 2$	3	4	5	6
1	1.4142	1.0000	0.7654	0.6180	0.5176
2	1.4142	2.0000	1.8478	1.6810	1.4142
3		1.0000	1.8478	2.0000	1.9319
4			0.7654	1.6810	1.9319
5				0.6810	1.4142
6					0.5176

c) The low pass filter described in section (b) is to be converted to band -pass filter having a bandwidth of 475 MHz to 525 MHz . Sketch the new design and calculate the component values.
[10 marks]
d) Show how this filter can be converted or modified to become a band stop filter.
[5 marks]
Total 25 marks

School of Engineering

MSc System Engineering
Semester One Examination 2018/2019
Signal Processing
Module No. EEM7011

Question 4.

a) Find the frequency response for the digital filter with the following transfer function;

$$
H \Varangle=\frac{1+2 z^{-1}}{1+5.0 z^{-1}-9.0 z^{-2}}
$$

[8 marks]
b) Calculate the magnitude and phase if the sampling rate \hbar_{s} is 20 KHz and the analogue frequency f is 4 KHz given that $\Omega=2 \pi \frac{f}{f_{s}}$
c) Derive the difference equation.
[4 marks]
d) Show how this difference equation could be implemented using delays and feedback.

School of Engineering

MSc System Engineering
Semester One Examination 2018/2019
Signal Processing
Module No. EEM7011

Question 5.

A block diagram for an analogue control system is shown in Figure Q5 below:

Figure Q5
Where the digital controller is Kp ,
and the zero-order hold $G\left(\xi=\frac{1-e^{-s T}}{s}\right.$,
with the plant $G_{k} \xi=\frac{0.5}{s+0.5}$
a) Determine the closed - loop digital z transfer function for the system.
[10 marks]
b) If the gain of the digital controller $\mathrm{Kp}=10$, determine the range of the sampling interval T that will make the closed loop stable.
c) If the sampling frequency $f=20 \mathrm{~Hz}$, determine the range of the controller gain Kp which will make the closed loop stable.

School of Engineering

MSc System Engineering
Semester One Examination 2018/2019
Signal Processing
Module No. EEM7011

Question 6

a) Determine using the BZT method, the transfer function and difference equation for the digital filter which can replace a first order low pass resistive capacitive analogue filter. Assuming a sampling frequency of 150 Hz and a cut-off frequency of 30 Hz , develop the transfer functions;

$$
H_{S}=\frac{Y_{S}}{X_{S}} \text { and } \quad H_{Z}=\frac{Y_{Z}}{X_{Z}}
$$

Assume ${ }^{s=\frac{T(z-1)}{2(z+1)}}$ and pre-warped frequency $\quad W p=\tan \left(\frac{W c T}{2}\right)$.
[10 marks]
b) Sketch the first order low pass filter and its digital replacement with the difference equation shown.
[10 marks]
c) Show how this low pass first order filter can be modified to become a high pass first order filter.

END OF QUESTIONS

School of Engineering

MSc System Engineering
Semester One Examination 2018/2019
Signal Processing
Module No. EEM7011

Formula Sheet

A Table of Basic Laplace and Z transforms

Time $f(t) \quad$ Laplace $F(s) \quad Z$ transforms

1. $\delta[t]$
2. 4$) t \stackrel{1}{s}$
3. 4$) t \rightarrow \frac{1}{s}$
4. 4$) t \rightarrow \frac{1}{s}$

1

$$
\frac{z}{z-1}
$$

3. $t \quad \frac{1}{s^{2}}$

$$
\frac{T z}{(z 4)^{2}}
$$

4. $e^{-a t}$

$$
\frac{1}{s+a}
$$

$$
\frac{Z}{Z-e^{-a T}}
$$

5. $\frac{1}{1-e^{-g t}}$

$$
\frac{1}{\$ s+申}
$$

$$
\frac{\left.\Delta-e^{-a}\right)}{\text { (} z) H\left(z-\phi^{-a T}\right.}
$$

6. $\sin \omega t$

$$
\frac{\omega}{s^{2}+\omega^{2}}
$$

$$
\frac{z \sin \omega T}{z^{2}-2 z \cos \omega T+1}
$$

7. $\cos \omega t$

$$
\frac{s}{s^{2}+\omega^{2}}
$$

$$
\frac{z^{2}-z \cos \omega T}{z^{2}-2 z \cos \omega T+1}
$$

8. $e^{-a t} \sin \omega t$

$$
\frac{\omega}{s+申^{2}+\omega^{2}}
$$

$$
\frac{z e^{-a T} \sin \omega T}{z^{2}-2 z e^{-a T} \cos \omega T+e^{-2 a T}}
$$

9. $e^{-a t} \cos \omega t$ $\frac{s+a}{s+\boldsymbol{q}^{2}+\omega^{2}}$
10. $\sinh \omega t$

$$
\frac{\omega}{s^{2}-\omega^{2}}
$$

$$
\begin{array}{r}
\frac{\nless z-e^{-a} \operatorname{Cos} \omega T}{z^{2}-2 z e^{-a T} \cos \omega T+e^{-2 a T}} \\
\frac{z \sinh \omega T}{z^{2}-2 z \cosh \omega T+1}
\end{array}
$$

11. $\cosh \omega t$

$$
\frac{s}{s^{2}-\omega^{2}}
$$

$$
\frac{\not \& z \cosh \omega \pi}{z^{2}-2 z \cosh \omega T+1}
$$

School of Engineering
MSc System Engineering
Semester One Examination 2018/2019
Signal Processing
Module No. EEM7011

A Table of Basic Sampled data and Z Transforms

signal $\mathrm{x}[\mathrm{n}]$	z TransformX(z)	Region of Convergence
$1 \delta[n]$	1	all z
$2 u[n]$	$\frac{z}{z-1}$	$\|z\|>1$
$3 \beta^{n} u[n]$	$\frac{z}{z-\beta}$	$\|z\|>\|\beta\|$
$4 n u[n]$	$\frac{z}{(z-1)^{2}}$	$\|z\|>1$
$5 \cos (n \Omega) u[n]$	$\frac{z^{2}-z \cos \Omega}{z^{2}-2 z \cos \Omega+1}$	$\|z\|>1$
6. $\sin (n \Omega) u[n]$	$\frac{z \sin \Omega}{z^{2}-2 z \cos \Omega+1}$	$\|z\|>1$
$7 \beta^{n} \cos (n \Omega) u[n]$	$\frac{z^{2}-\beta z \cos \Omega}{z^{2}-2 \beta z \cos \Omega+\beta^{2}}$	$\|z\|>\|\beta\|$
$8 \beta^{n} \sin n$) $4 n$	$\frac{\beta z \sin \Omega}{z^{2}-2 \beta z \cos \Omega+\beta^{2}}$	$\|z\|>\|\beta\|$

END OF PAPER

