UNIVERSITY OF BOLTON

SCHOOL OF ENGINEERING

BENG (HONS) ELECTRICAL \& ELECTRONIC ENGINEERING

SEMESTER ONE EXAMINATION 2018/2019

ELECTRICAL MACHINES \& POWER ELECTRONIC DRIVES

MODULE NO: EEE6011

Date: Monday 14 ${ }^{\text {th }}$ January 2019

INSTRUCTIONS TO CANDIDATES:

Time: 14:00-16:00

There are SIX questions.
Answer ANY FOUR questions.
All questions carry equal marks.

Marks for parts of questions are shown in brackets.

Electronic calculators may be used provided that data and program storage memory is cleared prior to the examination.

CANDIDATES REQUIRE:
Formula Sheet (attached).

School of Engineering
BEng (Hons) Electrical and Electronic Engineering
Semester One Examination 2018/2019
Electrical Machines \& Power Electronic Drives
Module no. EEE6011

Question 1

a) For the rotating wire loop shown in figure Q_{1}, give the dynamical equations of this loop and build the SIMULINK model so that the inputs are the supply voltage V and the applied mechanical load torque Tm_{m}. You can assume that the angular rotational speed ω and the loop current i as the outputs for this model. You need to take the following parameters into your consideration: $B=m a g n e t i c ~ f i e l d ~ d e n s i t y ~(T), ~$ R=resistance of the wire (Ω), L=inductance of the wire (H), J=moment of inertia of the loop (kg.m²).
[10 marks]

Figure Q_{1} a rotating wire-loop in a magnetic field
(b) A 3-phase, $50 \mathrm{~Hz}, 6600 \Delta / 1000 \Delta / 440 \mathrm{Y}$ V. transformer.
(i) What is the purpose of using three winding transformers?
(ii)Determine suitable numbers of turns to ensure the peak flux does not exceed 0.03 Web.
(iii) Determine the primary line current and power factor if the 1000 V winding delivers a balanced load of 100 kVA at 0.8 power factor lagging and the 440 V winding delivers a balanced load of 50 kW at unity power factor.

School of Engineering
BEng (Hons) Electrical and Electronic Engineering
Semester One Examination 2018/2019
Electrical Machines \& Power Electronic Drives
Module no. EEE6011

Question 2

The equivalent circuit of a 440 V , 3-phase, 8 pole, and 50 Hz star-connected induction motor is shown in Fig. Q2. The short-circuit test is conducted with a locked rotor and a line current of 80 A . The open-circuit test is conducted by supplying the stator winding at rated voltage and at the rotor is rotating freely without any mechanical load.

Fig. Q2 The per-phase equivalent circuit of a 3-phase induction motor
a) Determine the line voltage and power factor on the short circuit test;
[5 marks]
b) We need to apply a low voltage in a short-circuit test. What is the reason for using low voltage?
[3 marks]
c) Determine the line current and power factor on the open-circuit test;
[4 marks]
d) The electromagnetic torque if the motor is running at speed of 720 rpm
e) The starting torque, starting current; and
f) The efficiency for case (c) if mechanical losses are 4 kW

School of Engineering
BEng (Hons) Electrical and Electronic Engineering
Semester One Examination 2018/2019
Electrical Machines \& Power Electronic Drives
Module no. EEE6011

Question 3

A $3300 \mathrm{~V}, 3$-phase, 50 Hz , star-connected synchronous motor has a synchronous impedance of $2+j 15 \Omega$ per phase. Operating with a line emf of 2500 V , it just falls out of step at full load.
a) Draw the equivalent circuit of a synchronous motor.
b) To what open-circuit emf will it have to be excited so that it will just remain in synchronism at 50% above rated torque?
[8 marks]
c) With this emf, what will then be:
(i) the input power;
(ii) current; and
(iii) Power factor at full load.

Total 25 marks

Question 4

An eight-pole, $25 \mathrm{~kW}, 120 \mathrm{~V}$ DC generator has a duplex lap-wound armature, which has 64 coils with 16 turns per coil. Its rated speed is 2400 rpm .
(a) Define a duplex lap-wound DC armature.
(b) How much flux per pole is required to produce the rated voltage in this generator at no load conditions?
[5 marks]
(c) What is the induced torque in this machine at rated load?
[5 marks]
(d) Determine path current in the armature of this generator at the rated load?
[5 marks]
(e) How many brushes must this generator have?
[3 marks]
(f) If the resistance of this winding is 0.011Ω per turn, what is the armature resistance of this machine?

School of Engineering
BEng (Hons) Electrical and Electronic Engineering
Semester One Examination 2018/2019
Electrical Machines \& Power Electronic Drives
Module no. EEE6011

Question 5

(a) A $2.5 \mathrm{~kW}, 120 \mathrm{~V}, 50 \mathrm{~Hz}$ capacitor-start motor has the following impedances for the main and auxiliary windings(at starting):

$$
Z_{\text {main }}=4.5+j 3.7 \quad \Omega \quad, Z_{\text {auxiliary }}=9.5+j 3.5 \Omega
$$

Find the value of starting capacitance that will place the main and auxiliary winding currents in quadrature at starting;
(b) Explain briefly the effect of adding capacitor to the auxiliary winding of a singlephase induction motor.
[5 marks]
(c) Two single-phase transformers operate in parallel to supply a load of $24+\mathrm{j} 10 \Omega$. Transformer A has a secondary emf of 400 V on open-circuit and an internal impedance referred to secondary side of $1+\mathrm{j} 3 \Omega$. The corresponding figures for transformer B are 450 V and $1+4 \Omega$.
(i) Calculate the load voltage;
(ii) Calculate the load current; and
(iii) Calculate the terminal power factor of each transformer

School of Engineering
BEng (Hons) Electrical and Electronic Engineering
Semester One Examination 2018/2019
Electrical Machines \& Power Electronic Drives
Module no. EEE6011

Question 6

A DC motor is driven by a thyristor-bridge rectifier as shown in figure Q_{6} below.
Determine the following conditions:
(i) The appropriate firing angle of the bridge;
[6 marks]
(ii) The DC machine back emf;
[6 marks]
(iii) The torque and speed when the flux is at rated value; and
[6 marks]
(iv) The firing angle of the bridge to have the motor running at half rated speed with rated flux. Assume torque is proportional to (speed) ${ }^{2}$.
[7 marks]
$R_{A}=0.05$ per unit, $R_{\text {ext }}=0.06$ per unit, $E_{d}=300 \mathrm{~V}$, rated voltage of the machine $=250 \mathrm{~V}$.

Figure Q6 ADC motor driven by Thyristor Bridge Rectifier

Total 25 marks

END OF QUESTIONS

School of Engineering
BEng (Hons) Electrical and Electronic Engineering
Semester One Examination 2018/2019
Electrical Machines \& Power Electronic Drives
Module no. EEE6011

Formula sheet

These equations are given to save short-term memorisation of details of derived equations and are given without any explanation or definition of symbols; the student is expected to know the meanings and usage.

DC Machines
$\mathrm{E}=\mathrm{V}+\mathrm{I}_{\mathrm{A}} . \mathrm{R}_{\mathrm{A}} \quad$ (Generator voltage equation)
$\mathrm{E}=\mathrm{V}-\mathrm{I}_{\mathrm{A}} \cdot \mathrm{R}_{\mathrm{A}} \quad$ (Motor voltage equation)
$\mathrm{K}_{\mathrm{e}}=\mathrm{K}_{\mathrm{t}}=(2 \mathrm{pCN} / \mathrm{a}), \mathrm{E}=\mathrm{K}_{\mathrm{e}} \cdot \omega \cdot \Phi, \mathrm{T}=\mathrm{K}_{\mathrm{t}} . \mathrm{I}_{\mathrm{A}} . \Phi$
$P_{\text {conv }}=E . I_{A}=\omega . T$
Transformers and Induction motors
Transformer voltage ratio: $\frac{E_{1}}{E_{2}}=\frac{N_{1}}{N_{2}}$
Secondary parameters referred to primary side: $R_{2}^{\prime}=\left(\frac{N_{1}}{N_{2}}\right)^{2} R_{2}, \quad X_{2}^{\prime}=\left(\frac{N_{1}}{N_{2}}\right)^{2} X_{2}$,
$I_{2}^{\prime}=\frac{N_{2}}{N_{1}} I_{2}, \quad V_{2}^{\prime}=\frac{N_{1}}{N_{2}} V_{2}, P=\sqrt{3} V_{L} I_{L} \cos \theta, Q=\sqrt{3} V_{L} I_{L} \sin \theta$
slip $s=\frac{n_{s}-n_{r}}{n_{s}}, P_{\mathrm{AC}}=3 I_{2}^{2} \frac{R_{2}}{s}, P_{\text {coav }}=3 I_{2}^{2} R_{2}\left(\frac{1-s}{s}\right), P_{\text {core }}=3 E_{1}^{2} G_{C}$,

$$
\begin{gathered}
\tau_{\text {ind }}=\frac{(1-s) P_{A G}}{(1-s) \omega_{\text {syma }}} \\
\tau_{\text {ind }}=\frac{P_{\text {AG }}}{\omega_{\text {sycx }}}
\end{gathered}
$$

Synchronous machines

$$
\text { Voltage vector equation: } \quad E=V+I . Z
$$

Power equations: $\mathrm{P}=\frac{E V}{Z} \cos (\psi-\delta)-\frac{V^{2}}{Z} \cos (\psi) \quad, \mathrm{Q}=\frac{E V}{Z} \sin (\psi-\delta)-\frac{V^{2}}{Z} \sin (\psi)$
For generator

$$
P_{\text {in }}=\tau_{a p p} \omega_{m}, P_{c o n v}=\tau_{\text {ind }} \omega_{m}=3 E_{A} I_{A} \cos \gamma, \quad P_{\text {out }}=\sqrt{3} V_{L} I_{L} \cos \theta
$$

For motor the above equations will be used in the reversed order.

School of Engineering
BEng (Hons) Electrical and Electronic Engineering
Semester One Examination 2018/2019
Electrical Machines \& Power Electronic Drives
Module no. EEE6011

Motor Drives

The rotor terminals ac voltage with the open-circuit rotor voltage at standstill, $\mathrm{E}=\mathrm{s} \mathrm{E}_{\text {oc }}$
The rectified output voltage $\mathrm{E}_{\mathrm{d}}=1.35 \mathrm{E}$
$s=\frac{E_{2}}{1.35 E_{O C}}$
DC Voltage developed by the inverter $E_{2}=1.35 E_{T} \cos \alpha$
Single-phase Induction motor

$$
\begin{aligned}
& Z_{f}=R_{f}+j X_{f}=\frac{j X_{m}\left(R_{2}^{\prime} / s+j X_{2}^{\prime}\right)}{j X_{m}+\left(R_{2}^{\prime} / s+j X_{2}^{\prime}\right)} \\
& Z_{b}=R_{b}+j X_{b}=\frac{j X_{m}\left(R_{2}^{\prime} /(2-s)+j X_{2}^{\prime}\right)}{j X_{m}+\left(R_{2}^{\prime} /(2-s)+j X_{2}^{\prime}\right)} \\
& P_{g, f}=I_{1}^{2}\left(0.5 R_{f}\right) \\
& P_{g, b}=I_{1}^{2}\left(0.5 R_{b}\right) \\
& P_{g}=P_{g, f}-P_{g, b} \\
& T_{d, f}=\frac{P_{g, f}}{\omega_{s}} \\
& P_{2, C u, f}=s P_{g, f} \\
& P_{2, C u, b}=(2-s) P_{g, b}
\end{aligned} \quad T_{d}=\frac{P_{g}}{\omega_{s}}=\frac{P_{g, f}}{\omega_{g}} \begin{aligned}
& \omega_{s, b} \\
& \omega_{s, b}
\end{aligned}
$$

