UNIVERSITY OF BOLTON

SCHOOL OF ENGINEERING

BENG(HONS) ELECTRICAL AND ELECTRONIC ENGINEERING

SEMESTER ONE EXAMINATION 2018/2019

INTRODUCTORY ELECTRICAL PRINCIPLES
MODULE NO: EEE4012

Date: Monday 14 ${ }^{\text {th }}$ January 2019

INSTRUCTIONS TO CANDIDATES:
There are FIVE questions.
Answer ANY FOUR questions.
All questions carry equal marks.
Individual marks are shown within the question.

A formula sheet is given at the end of the paper.

School of Engineering
BEng (Hons) Electrical and Electronic Engineering
Semester One Examination 2018/2019
Introductory Electrical Principles
Module No. EEE4012

Question 1

a) For the circuit shown in Fig. Q1.a, using node analysis technique or otherwise, find out the value of the current flowing through the $6 \mathrm{k} \Omega$ resistor.

Fig. Q1.a
b) A straight wire carries a current of 0.75 A . What is the magnetic field strength H at a distance of 100 mm from the wire?
c) A coil of copper wire has a resistance of 100Ω when its temperature is $20^{\circ} \mathrm{C}$. Determine its resistance at $100^{\circ} \mathrm{C}$ if the temperature coefficient of resistance (TCR) of copper at $20^{\circ} \mathrm{C}$ is $0.0039 /{ }^{\circ} \mathrm{C}$.
d) A rectangular coil measuring $200 \mathrm{~mm} \times 100 \mathrm{~mm}$ is mounted in such a manner that it can be rotated around the midpoint of the 100 mm side. The axis of rotation is at right angle to a magnetic field of uniform flux density 0.1 T . Calculate the flux in the coil for the following conditions:
(i) Maximum flux through the coil and the position at which it will occur
[2.5 marks]
(ii) Flux through the coil when 100 mm side is inclined at 45° to direction of the flux.
[2.5 marks]

Total 25 marks
PLEASE TURN THE PAGE....

School of Engineering
BEng (Hons) Electrical and Electronic Engineering
Semester One Examination 2018/2019
Introductory Electrical Principles
Module No. EEE4012

Question 2

a) For the following circuit (Fig Q2.a), using superposition theorem or otherwise, find out the current flowing through the 100Ω resistor.

Fig. Q2.a
[10 marks]
b)

For the circuit shown below (Fig. Q2.b), considering the RLoad as the load resistance

Fig. Q2.b
(i) Derive the equivalent Thevenin circuit between points "A" and "B"
(ii) Derive the equivalent Norton circuit between points " A " and " B "

School of Engineering
BEng (Hons) Electrical and Electronic Engineering
Semester One Examination 2018/2019
Introductory Electrical Principles
Module No. EEE4012

Question 3

a) For the circuit shown in Fig. Q3.a, calculate:

1. The total impedance Z;
2. The phase angle between the voltage and the total current θ;
[3 marks]
3. The total current IT_{T};
[3 marks]
4. Draw the currents and voltage phasor diagram;
[3 marks]
5. Is the circuit inductive or capacitive and why?; and
6. The resonance frequency.
[3 marks]

Fig. $Q_{3 .}$ a a parallel RLC circuit
b) In a resistance-capacitor circuit shown in Fig. Q3.b, the voltage drop across points A and B is 28.28 V . If the frequency of the current is 1 kHz ,
(i) Find the voltage across the resistor.
(ii) Draw the phasor diagram.

Fig. Q_{3} b an $R C$ series circuit

School of Engineering
BEng (Hons) Electrical and Electronic Engineering
Semester One Examination 2018/2019
Introductory Electrical Principles
Module No. EEE4012

Question 4

a) A 800 VA single-phase transformer delivers 10 Amperes current to a resistive load. If the supply current at the primary is 2 Amperes. Calculate:
i. The transformer voltage ratio
[2 marks]
ii. The transformer primary voltage
b) What is the inductance of an inductor if number of turns are 100 turns, relative permeability of 1000 , and coil area to coil length ratio is 3 ?
c) A stepper motor has an angular resolution of 5 degrees per step. If the clock input producing the stepper motor drive sequence is 100 Hz , what will be the rotational speed of the stepper motor in revolutions per minute?
[8 marks]
d) Derive the generated EMF equation of a single-loop wire rotating at constant angular velocity within a magnetic field whose magnetic flux density is constant.
[3 marks]
e) Calculate the current and power delivered to a 0.1 ohms load resistor connected across the terminals of the wire loop of branch c if the magnetic flux density is 0.5 T , the angular velocity is $314.2 \mathrm{rad} / \mathrm{sec}$, radius of the loop is 10 cm and the side length of the loop is 8 cm .

Question 5

a) Define the following terms (2 marks for each definition):
i. Frequency
ii. Period
iii. Phase angle
iv. Peak to peak value
v. Capacitance
vi. Inductance

School of Engineering
BEng (Hons) Electrical and Electronic Engineering
Semester One Examination 2018/2019
Introductory Electrical Principles
Module No. EEE4012

Q5 continued

b) X, Y and Z are three sine $A C$ voltage waveforms of the same frequency. Sinewave X leads sinewave Y by a phase angle of 60° and lags sinewave Z by 70°.
(i) What is the phase angle between wave Y and wave Z ? [3 marks]
(ii) Which wave is leading?
c) A 240-V AC voltage is applied across two resistors connected in series, namely a $20-\Omega$, and a $60-\Omega$. Find the value of (2.5 marks for each branch):
i. The source rms and peak current
ii. Vmax and Vav
iii. The rms $V_{R 1}$ and $V_{R 2}$
iv. Power dissipated in each resistor.

END OF QUESTIONS

School of Engineering
BEng (Hons) Electrical and Electronic Engineering
Semester One Examination 2018/2019
Introductory Electrical Principles
Module No. EEE4012

APPENDIX: Formula Sheet

The following symbols in the formulae have their standard meaning:
Ohm's law: $V=I R$
Power: $P=I V$
Magnetic flux: $\Phi=B A$
Induced voltage: $V=\Delta \Phi / \Delta t$
Force experienced by charged particle $=q v B \sin \theta$
Motional emf: $E=B l v$

$$
f=\frac{p n}{120}
$$

Magnitude of the Reactance of Inductor $L: X_{L}=2 \pi f L$
Magnitude of the Reactance of Capacitor $C: X_{C}=\frac{1}{2 \pi f C}$
Pythagorean theorem: $\mathrm{c}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$
Tangent function: $\tan \mathrm{A}=$ opposite/adjacent
$\mu_{o}=4 \pi X 10^{-7} \mathrm{H} / \mathrm{m}, \epsilon_{o}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$
$H=\frac{N \cdot I}{l}$
MMF=N.I
$L=\frac{\mu_{0} \mu_{r} A N^{2}}{l}, \quad E=\frac{1}{2} L I^{2}$
$\mathrm{C}=\mathrm{Q} / \mathrm{V}, \quad \mathrm{C}=\frac{E A}{d}, \quad \mathrm{E}=\frac{1}{2} C V^{2}$
$v_{L}=L \cdot \frac{d i_{L}}{d t}$
$i_{C}=C \frac{d v_{C}}{d t}$
$f=\frac{p n}{120}$
Transformer voltage ratio: $\frac{V_{1}}{V_{2}}=\frac{N_{1}}{N_{2}}, \mathrm{P}=\mathrm{V}_{1} . \mathrm{I}_{1}=\mathrm{V}_{2} . \mathrm{I}_{2}$

School of Engineering
BEng (Hons) Electrical and Electronic Engineering
Semester One Examination 2018/2019
Introductory Electrical Principles
Module No. EEE4012

Multiply the Value	By	To Get the Value
Peak	2	Peak-to-peak
Peak-to-peak	0.5	Peak
Peak	0.637	Average
Average	1.570	Peak
Peak	0.707	RMS (effective)
RMS (effective)	1.414	Peak
Average	1.110	RMS (effective)
RMS (effective)	0.901	Average

Summary Table for Series and Parallel RL Círcuits

X_{L} and R in Series	X_{L} and R in Parallel
I the same in X_{L} and R	V_{T} the same across X_{L} and R
$V_{T}=\sqrt{V_{R}^{2}+V_{L}^{2}}$	$I_{T}=\sqrt{I_{R}^{2}+I_{L}^{2}}$
$Z=\sqrt{R^{2}+X_{\mathrm{L}}^{2}}=\frac{V_{T}}{I}$	$Z_{T}=\frac{V_{T}}{I_{T}}$
V_{R} lags V_{L} by 90°	I_{L} lags I_{R} by 90°
$\theta=\arctan \frac{X_{\mathrm{L}}}{R}$	$\theta=\arctan \left(-\frac{I_{\mathrm{L}}}{I_{R}}\right)$

Summary Table for Series and Parallel RC Circuits

X_{C} and R in Series	X_{C} and R in Parallel
I the same in X_{C} and R	V_{T} the same across X_{C} and R
$V_{T}=\sqrt{V_{R}^{2}+V_{C}^{2}}$	$I_{T}=\sqrt{I_{R}^{2}+I_{C}^{2}}$
$Z=\sqrt{R^{2}+X_{C}^{2}}=\frac{V_{T}}{I}$	$Z_{T}=\frac{V_{T}}{I_{T}}$
V_{C} lags V_{R} by 90°	I_{C} leads I_{R} by 90°
$\theta=\arctan \left(-\frac{X_{C}}{R}\right)$	$\theta=\arctan \frac{I_{C}}{I_{R}}$

