### **UNIVERSITY OF BOLTON**

## WESTERN INTERNATIONAL COLLEGE FZE

### **BEng (HONS) CIVIL ENGINEERING**

## SEMESTER ONE EXAMINATION 2018/2019

# **ADVANCED STRUCTURAL ANALYSIS AND DESIGN**

## MODULE NO: CIE6001

Date: Tuesday 8<sup>th</sup> January 2019

Time: 10.00am to 1.00pm

**INSTRUCTIONS TO CANDIDATES:** 

There are FIVE questions on this paper.

Answer ALL questions.

All questions carry equal marks.

Marks for parts of questions are shown in the brackets.

This examination paper carries a total of 100 marks.

All working must be shown. A numerical solution to a question obtained by programming an electronic calculator will not be accepted.

Extracts from EC3 for use in Question 1 are attached on Pages 11-12 of this paper.

#### **Question 1**

The roadway signboard structure shown in **Figure Q1(a) below** has a SHS 200X200 steelwork post with a square baseplate bolted with six holding down bolts as shown in **Figure Q1(d) on page 4**. The signboard whose dimensions are shown in **Figure Q1(b) on page 3** has a self-weight of 15kN(factored) acting downwards and a factored wind load of 8kN acting perpendicular (line of action acting towards the centre) to the sign board as shown in the plan view **Figure Q1(c) on page 3**.

The SHS steel section has the following properties:

| Wall thickness   | 15mm  |
|------------------|-------|
| Depth of section | 200mm |
| Width of section | 200mm |

i) Calculate the in plane and out of plane moments acting on the holding down bolts of the bolt group. Also state the direct shear acting on the bolt group.

(4 marks)

ii) What are the tension and the shear forces in the bolt carrying the greatest tensile force? Provide Figures to support the solution. (16 marks)



Total 20 marks

Question 1 continued over the page

#### **Question 1 continued**



Question 1 continued over the page Please turn the page

#### **Question 1 continued**



#### **Question 2**

A multi-storey building requires an internal steel column which will carry an ultimate design axial compressive load of 1700 kN. The column has pinned boundary conditions at each end, and the inter-storey height is 6 m.

Two alternatives are proposed:

- i) A hot formed circular hollow section with a diameter 200 mm and wall thickness of 10 mm with Class 2 section, as shown in **Figure Q2(a).**
- ii) Hot rolled UKC 254x146x43 section in steel grade S275 and Class 1 section, as shown in **Figure Q2(b)**.
  - a) By using the EC3 method, assess the suitability of both alternatives to resist the ultimate design axial compressive load. (17 marks)
  - b) What conclusion do you draw from the results in part (a)? Which section shape do you recommend and why? (3 marks)

**Total 20 marks** 

Question 2 continued over the page Please turn the page

#### **Question 2 continued...**

| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                  | d=200mm                                        |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
|                                                                                                                       | Figure Q2(a): Circular Hollow Section<br>(CHS) |
| h = 259.6                                                                                                             |                                                |
| $t_{w} = 7.2 \text{mm}$                                                                                               |                                                |
| t <sub>f</sub> = 12.7mm                                                                                               |                                                |
| $A = 54.8 \text{cm}^2$                                                                                                | y y r                                          |
| $l_y = 677 \text{ cm}^4$                                                                                              | n                                              |
| $i_y = 10.9$ cm                                                                                                       |                                                |
| iz = 3.52cm                                                                                                           |                                                |
| Class 1 section                                                                                                       |                                                |
| Steel grade 5275<br>Modulus of Elasticity E = $210$ kN/mm <sup>2</sup><br>Yield Strength fy = $275$ N/mm <sup>2</sup> | Figure Q2(D): UKC254X146X43                    |

### Additional information:

Euler Critical load

$$N_{cr} = \frac{\pi^2 EI}{l_{cr}^2}$$

Design method and data sheet for buckling of columns to EC3 are attached at the end of this paper on Page 11 and Page 12.

#### **Question 3**

A composite floor construction consists of a concrete floor slab supported on a steel beam as shown in **Figure Q3(a)**. The steel beam is propped during casting of the concrete, so that, when the concrete has hardened, the props are removed and all loading is carried by composite beam action.



The beam is simple supported over a span of 8.0m and carries the following factored uniformly distributed loads:

During construction (steel section alone carries loads): 7kN/m Dead Load + 15kN/m Imposed Load

In service (Loads are carried by the composite action) as shown in Figure Q3(b)



Question 3 continued over the page Please turn the page

#### **Question 3 continued**

- a. Find the maximum working stress and maximum deflection of the beam during construction. (3 marks)
- b. Transform the composite section to an equivalent steel beam. Find the position of the neutral axis, the value of the moment of inertia, I<sub>y,comp</sub>, and the values of elastic section modulus, **W**<sub>el,y,comp</sub>, for the transformed beam.

(10 marks)

- c. For the in-service condition, find the maximum stress in the steel, the maximum stress in the concrete and the maximum deflection of the composite beam. (5 marks)
- d. Check whether the stresses in steel and concrete are within the allowable limits. (2 marks)

#### DATA

The central deflection of a simply supported beam carrying a uniformly distributed load w per unit length is given by:

 $\delta = \frac{5wL^4}{384EI}$ 

Total 20 marks

#### **Question 4**



**Figure Q4** shows a rigid-jointed frame ABCDE fixed at suppose A and E. The plastic moment is  $2M_p$  for the beam BCD and  $M_p$  for columns AB and DE. The frame carries one horizontal load of 25kN at B and one vertical load of 40kN at C.

- (a) Find the values of M<sub>p</sub> which correspond to the following collapse mechanisms:
  - i) Plastic hinges at B, C and D.
  - ii) Plastic hinges at A, B, D and E.
  - iii) Plastic hinges at A, C, D and E.
- (b) Draw the bending moment diagram for the most critical of the collapse mechanisms in part (a), showing values at A, B, C, D and E. (5 marks)

Total 20 marks

(15 marks)

#### **Question 5**



#### Figure Q5

Figure Q5 shows the cross section of a simply supported pre-stressed concrete beam of span 6.5m. The beam contains eight 12.9mm diameter (7 wire Super Strand) pre-stressing strands at a height of 150 mm from the bottom of the beam.

The beam supports offices and so the proportion of the variable load to be considered in the quasi permanent loading condition is 0.3. In service, the beam carries the following loads:

| Permanent load (incl   | uding beam self weight)            |                   | 50kN/m                                   |
|------------------------|------------------------------------|-------------------|------------------------------------------|
| Variable load          | 1 2                                |                   | 40kN/m                                   |
| Characteristic streng  | th of one pre-stressing strand     |                   | = 1860N/mm <sup>2</sup>                  |
| Initial pre-stress     |                                    |                   | = 70% of UTS                             |
| Pre-stress losses      |                                    |                   | = 25% of initial pre-stress              |
| Concrete strength at   | transfer                           | f <sub>ck</sub> : | = 35 N/mm <sup>2</sup>                   |
| Concrete strength in   | service                            | fck               | = 45 N/mm²                               |
| For the whole concre   | ete section                        | Area              | = 412.5x 10 <sup>3</sup> mm <sup>2</sup> |
| o Ar                   |                                    | INA               | = 15.8 x 10 <sup>9</sup> mm <sup>4</sup> |
| Limiting stresses in c | concrete:                          |                   |                                          |
| At transfer            | 0.6f <sub>ck</sub> in compression; | 1N/m              | nm <sup>2</sup> in tension               |
| In service             | 0.45fck in compression:            | 3.8N              | /mm <sup>2</sup> in tension              |

0.45f<sub>ck</sub> in compression;

Question 5 continued over the page

#### **Question 5 continued**

- (a) Calculate the stresses in the concrete at the top and bottom of the beam:(i) at transfer and
  - (ii) In service under quasi-permanent loads

(13 marks)

- (b) Draw the distribution of stress over the height of the beam:(i) at transfer and
  - (ii) In service under quasi-permanent loads

(4 marks)

- (c) Compare the calculated values of stress in the concrete with the limiting values of stress in the concrete:
  - (i) at transfer and
  - (ii) In service under quasi-permanent loads. Comment on the adequacy of the beam

(3 marks)

**Total 20 marks** 

### END OF QUESTIONS

Please turn the page for supplementary information

|                                                                              | E                                                                                                                                                                                                                                                                          | xtracts                                          | from Eu                                        | ırocode                                         | 3: Desi                                    | gn of st                           | eel structures                      |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------|-------------------------------------------------|--------------------------------------------|------------------------------------|-------------------------------------|
| 6.3 Buckling                                                                 | resistance of memb                                                                                                                                                                                                                                                         | ers                                              |                                                |                                                 |                                            |                                    |                                     |
| 6.3.1 Uniform                                                                | n members in compress                                                                                                                                                                                                                                                      | sion                                             |                                                |                                                 |                                            |                                    |                                     |
| 6.3.1.1 Buck                                                                 | ing resistance                                                                                                                                                                                                                                                             |                                                  |                                                |                                                 |                                            |                                    |                                     |
| (1) A compress                                                               | sion member shall be veri                                                                                                                                                                                                                                                  | fied agai                                        | nst buck                                       | ling as fo                                      | ollows:                                    |                                    |                                     |
| $\frac{N_{Ed}}{N_{b,Rd}} \le 1,0$                                            |                                                                                                                                                                                                                                                                            |                                                  |                                                |                                                 |                                            |                                    | (6.46)                              |
| where                                                                        |                                                                                                                                                                                                                                                                            |                                                  |                                                |                                                 |                                            |                                    |                                     |
| N <sub>Ed</sub> is the de<br>N <sub>b,Rd</sub> is the de                     | esign value of the compresesign buckling resistance of                                                                                                                                                                                                                     | ssion for<br>of the co                           | ce<br>mpressio                                 | n memb                                          | er.                                        |                                    |                                     |
| (3) The design                                                               | buckling resistance of a c                                                                                                                                                                                                                                                 | ompress                                          | ion mem                                        | iber shou                                       | ıld be ta                                  | ken as:                            |                                     |
| $N_{b, Rd} = \frac{\chi A f_{\gamma}}{\gamma_{M1}}$                          | for Class 1, 2 and 3 o                                                                                                                                                                                                                                                     | cross-sec                                        | ctions                                         |                                                 |                                            |                                    | (6.47)                              |
| $N_{b,Rd} = \frac{\chi A_{eff} f_y}{\gamma_{M1}}$                            | for Class 4 cross-sec                                                                                                                                                                                                                                                      | tions                                            |                                                |                                                 |                                            | ,                                  | (6.48)                              |
| where $\chi$ is the $i$                                                      | reduction factor for the re                                                                                                                                                                                                                                                | levant bi                                        | uckling n                                      | node.                                           |                                            |                                    | -                                   |
| (4) In determin<br>into account.                                             | mining the buckling resist<br>non-uniform distribution c<br>v be performed. For out-of<br>ing A and A <sub>eff</sub> holes for fas                                                                                                                                         | cance of<br>of the cor<br>f-plane b<br>steners a | members<br>npressio<br>uckling s<br>at the col | s with ta<br>n force s<br>see also (<br>umn enc | pered se<br>econd-o<br>5.3.4.<br>Is need r | ctions al<br>rder ana<br>not to be | ong the<br>lysis according<br>taken |
| 6.3.1.2 Buck                                                                 | ling curves                                                                                                                                                                                                                                                                |                                                  |                                                |                                                 |                                            |                                    |                                     |
| (1) For axial $\alpha$ slenderness $\overline{\lambda}$                      | ompression in members t<br>should be determined fro                                                                                                                                                                                                                        | he value<br>om the re                            | of χ for<br>levant b                           | the appr<br>uckling c                           | opriate r<br>curve acc                     | on-dime<br>ording to               | ensional<br>D:                      |
| $\chi = -\frac{1}{4}$<br>where $\Phi = 0$<br>$\overline{\lambda} = \sqrt{2}$ | $\frac{1}{\frac{1}{\phi + \sqrt{\phi^2 - \overline{\lambda}^2}}} \text{ but } \chi \le 1, 0$<br>$\frac{1}{\phi + \sqrt{\phi^2 - \overline{\lambda}^2}} \text{ but } \chi \le 1, 0$<br>$\frac{1}{\phi + \sqrt{\phi^2 - \overline{\lambda}^2}} \text{ for Class 1, 2 and 2}$ | 3 crosss                                         | ections                                        |                                                 |                                            |                                    | (6.49)                              |
| $\overline{\lambda} = \sqrt{2}$                                              | $\frac{N_{cr}}{N_{cr}}$ for Class 4 cross-s<br>is an imperfection factor<br>is the elastic critical force                                                                                                                                                                  | sections                                         | relevant                                       | buckling                                        | mode b                                     | asad on t                          | the groce cross                     |
| 1 A.CI.                                                                      | sectional properties.                                                                                                                                                                                                                                                      | ior the l                                        | Gievant                                        | Ducking                                         | mode D                                     | 1350 UN                            | ine gross tross                     |
| (2) The imperfe<br>from Table 6.1                                            | ection factor α correspond<br>and Table 6.2.                                                                                                                                                                                                                               | ling to th                                       | e approp                                       | oriate bu                                       | ckling cu                                  | irve shou                          | Ild be obtained                     |
|                                                                              | Table 6.1 — Imperi                                                                                                                                                                                                                                                         | fection f                                        | factors f                                      | for buck                                        | ling cur                                   | ves                                |                                     |
| [                                                                            | Buckling curve                                                                                                                                                                                                                                                             | ao                                               | а                                              | b                                               | с                                          | d                                  |                                     |
| -                                                                            | Imperfection factor a                                                                                                                                                                                                                                                      | 0,13                                             | 0,21                                           | 0,34                                            | 0,49                                       | 0,76                               |                                     |

(3) Values of the reduction factor  $\chi$  for the appropriate non-dimensional slenderness  $\overline{\lambda}$  may be obtained from Figure 6.4.

(4) For slenderness  $\overline{\lambda} \leq 0, 2 \text{ or for } \frac{N_{Ed}}{N_{cr}} \leq 0, 04$  the buckling effects may be ignoréd and only cross-sectional checks apply.

### Please turn the page

#### Guide to the Structural Eurocodes for students of structural design

|                         |                                        |                                                                                     |                                                   |                           | Buckling curve                   |                                  | ] |
|-------------------------|----------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------|----------------------------------|----------------------------------|---|
|                         | Cross section                          | Limits                                                                              |                                                   | Buckling<br>about<br>axis | S 235<br>S 275<br>S 355<br>S 420 | S 460                            |   |
|                         | Rolled sections                        | <pre>1,2 h/b &gt; 1,2</pre>                                                         | t <sub>f</sub> ≤ 40 mm                            | y – y<br>z – z            | a<br>b                           | a <sub>0</sub><br>a <sub>0</sub> |   |
| sections                |                                        |                                                                                     | 40 mm < t <sub>f</sub> ≤ 100                      | y – y<br>z – z            | b<br>c                           | a<br>a                           |   |
| Rolled s                |                                        |                                                                                     | $t_{\rm f}^{\rm C}$ $t_{\rm f} \le 100  {\rm mm}$ |                           | b<br>c                           | a<br>a                           |   |
|                         |                                        | ; d/h                                                                               | t <sub>f</sub> > 100 mm                           | y – y<br>z – z            | d<br>, d                         | c<br>c                           |   |
| lded<br>ttions          | v v v v v v v v v v v v v v v v v v v  |                                                                                     | t <sub>f</sub> ≤ 40 mm                            |                           | , b<br>c                         | b<br>c                           |   |
| Wel<br>I sec            |                                        |                                                                                     | t <sub>f</sub> > 40 mm                            | y – y<br>z – z            | c<br>d                           | c<br>d                           |   |
| llow<br>tions           |                                        |                                                                                     | hot finished                                      | any                       | а                                | a <sub>0</sub>                   |   |
| Ho                      |                                        |                                                                                     | cold formed                                       | any                       | с                                | с                                |   |
| sections                | generally                              |                                                                                     | nerally (except as<br>below)                      | any                       | Ь                                | b                                |   |
| Welded box              | xoq poplax                             | thick welds: a > 0,5t <sub>f</sub><br>b/t <sub>f</sub> < 30<br>h/t <sub>w</sub> <30 |                                                   | any                       | с                                | с                                |   |
| U, T and solid sections | U, T and solid sections solid sections |                                                                                     |                                                   |                           | с                                | с                                |   |
| L sections              | L sections                             |                                                                                     |                                                   | any                       | b                                | b                                |   |

#### Table 6.2 — Selection of buckling curve for a cross-section

**END OF PAPER**