SCHOOL OF ENGINEERING

BENG (HONS) CIVIL ENGINEERING

SEMESTER ONE EXAMINATION 2018/2019

ENGINEERING MATHEMATICS AND STRUCTURES

MODULE NO: CIE5004

Date: Friday $18^{\text {th }}$ January 2019

INSTRUCTIONS TO CANDIDATES:

Time: 10:00-13:00

There are TWO Sections, A and B.
Answer Section A in ONE Answer Booklet and Section B in the other.

Section A: Q1 to Q2 (Answer ALL Questions)
Section B: Q3 to Q5 (Answer TWO Questions from three)

All questions carry equal marks.
Marks for parts of questions are shown in brackets.

This examination paper carries a total of 100 marks.

All working must be shown. A numerical solution to a question obtained by programming an electronic calculator will not be accepted.

School of Engineering
BEng(Hons) in Civil Engineering
Semester One Examinations 2018/2019
Engineering Mathematics and Structures
Module No: CIE5004

SECTION A: STRUCTURES - Answer ALL Questions

Question 1

Figure Q1

Figure Q1 shows a simply supported beam with a span of 6 m . The beam carries a vertical point load at B and partial uniform distributed load between B and C as shown. The vertical reaction at support A is $\mathbf{R}_{A}=40 \mathrm{kN}$.
The beam has uniform rigidity $\mathbf{E l}=\mathbf{1 0 , 0 0 0} \mathbf{k N m}{ }^{2}$
a) Write the bending moment \boldsymbol{M} in terms of x.
b) Use the method of MaCaulay to calculate:
i. The rotation (slope) at A in radians
ii. The vertical deflection at B in mm
c) Show that the maximum deflection occurs when $x=3 \mathrm{~m}$ and find the value of this maximum deflection in mm .
(6 marks)
Formula for the deflection of a beam: $\frac{d^{2} v}{d x^{2}}=-\frac{M}{E I}$
Total 25 marks

School of Engineering
BEng(Hons) in Civil Engineering
Semester One Examinations 2018/2019
Engineering Mathematics and Structures
Module No: CIE5004

Question 2

The three pin frame shown in Figure Q2 (i) is pinned to supports at A and F, with a third pin at D. The frame is subjected to a vertical point load of 100 kN at position C and a horizontal point load of 50 kN at position E .
a) Calculate the value of the support reactions at A and F.
b) Draw the axial force diagram (AFD)
c) Draw the shear force diagram (SFD)
d) Draw the bending moment diagram (BMD)

For b), c) and d) show all important values on the diagrams and produce accompanying calculations to show how these values have been derived.

FIGURE Q2 (i)
PLEASE TURN THE PAGE....

School of Engineering
BEng(Hons) in Civil Engineering
Semester One Examinations 2018/2019
Engineering Mathematics and Structures
Module No: CIE5004
Figure Q2 (ii) shows a very similar three pin frame, pinned to supports at A and F, with the third pin at B (no longer at D). The applied loads remain the same as Figure Q2 (i).
e) Without doing any further calculations, sketch the Bending Moment Diagram (BMD) for the three pin frame shown in Figure Q2 (ii). Do not attempt to calculate the values of the bending moments in the frame.
(6 marks)

FIGURE Q2 (ii)

School of Engineering
BEng(Hons) in Civil Engineering
Semester One Examinations 2018/2019
Engineering Mathematics and Structures
Module No: CIE5004

SECTION B: ENGINEERING MATHEMATICS - Answer TWO Questions from three

Question 3

(a) Aggregate deliveries arriving on site follow a Poisson distribution, at an average rate of 0.8 per 10 minutes. For staffing numbers, the merchant requires the hourly flow of customers. Determine the probability of the following number of customers to 3 decimal places.
(i) 3 deliveries
(3 marks)
(ii) less than 5 deliveries (3 marks)
(iii) more than 5 deliveries.
(iv) the probability that one or more deliveries arrive in any half hour period.
(b) Nine concrete cubes are made from an onsite concrete mix. Extreme heat during the first two days of curing has resulted in the probability of the cubes curing too quickly and cracking being 0.29. Calculate, correct to 3 decimal places, the probability that:
(i) Exactly 4 cubes are cracked
(3 marks)
(ii) 5 or 6 are cracked
(2 marks)
(iii) At least 3 cubes are cracked
(4 marks)
(iv) What is the number of cracked cubes one would expect from a sample of $16 ?$

School of Engineering
BEng(Hons) in Civil Engineering
Semester One Examinations 2018/2019
Engineering Mathematics and Structures
Module No: CIE5004

Question 4

(a) The annual discharges over a reservoir's overflow weir are normally distributed with a mean flow of $14.6 \mathrm{~m}^{3} / \mathrm{s}$ and a standard deviation of $0.54 \mathrm{~m}^{3} / \mathrm{s}$. Over the course of 365 days, calculate:
(i) The expected number of discharges ranging between $14.75 \mathrm{~m}^{3} / \mathrm{s}$ and $15.3 \mathrm{~m}^{3} / \mathrm{s}$.
(ii) The expected number of discharges which exceed $15.63 \mathrm{~m}^{3} / \mathrm{s}$.
(iii) The expected number of discharges less than $13.25 \mathrm{~m}^{3} / \mathrm{s}$
(b) A large multi-storey car park, servicing an office block, has four exit barriers. The number of barriers in use at each of 100 instances monitored during a 24 hour period are given below

Barriers in use	0	1	2	3	4
Number of instances	10	45	31	11	3

(i) Chose an appropriate statistical model to fit to the data explaining the reasoning for your choice.
(ii) Test both the goodness of fit and "too good to be true" using a 5\% level of significance
(11 marks)
Total 25 marks

School of Engineering
BEng(Hons) in Civil Engineering
Semester One Examinations 2018/2019
Engineering Mathematics and Structures
Module No: CIE5004

Question 5

(a) The wooden cantilever element shown in Fig. Q5.1 is represented by the stiffness matrix below.

$$
\left[\begin{array}{l}
\mathrm{P}_{\mathrm{XA}} \\
\mathrm{P}_{\mathrm{YA}} \\
\mathrm{M}_{\mathrm{A}} \\
\mathrm{P}_{\mathrm{XB}} \\
\mathrm{P}_{\mathrm{YB}} \\
\mathrm{M}_{\mathrm{B}}
\end{array}\right]=\left[\begin{array}{cccccc}
\frac{E A}{L} & 0 & 0 & -\frac{E A}{L} & 0 & 0 \\
0 & \frac{12 E I}{L^{3}} & \frac{6 E I}{L^{2}} & 0 & -\frac{12 E I}{L^{3}} & \frac{6 E I}{L^{2}} \\
0 & \frac{6 E I}{L^{2}} & \frac{4 E I}{L} & 0 & -\frac{6 E I}{L^{2}} & \frac{2 E I}{L} \\
-\frac{E A}{L} & 0 & 0 & \frac{E A}{L} & 0 & 0 \\
0 & -\frac{12 E I}{L^{3}} & -\frac{6 E I}{L^{2}} & 0 & \frac{12 E I}{L^{3}} & -\frac{6 E I}{L^{2}} \\
0 & \frac{6 E I}{L^{2}} & \frac{2 E I}{L} & 0 & -\frac{6 E I}{L^{2}} & \frac{4 E I}{L}
\end{array}\right] \mathbf{x}\left[\begin{array}{l}
\delta_{\mathrm{XA}} \\
\delta_{\mathrm{YA}} \\
\theta_{\mathrm{A}} \\
\delta_{\mathrm{XB}} \\
\delta_{\mathrm{YB}} \\
\theta_{\mathrm{B}}
\end{array}\right]
$$

(i) Write out the reduced stiffness matrix required to determine the deflection at the tip of the beam.
(9 marks)
(ii) Determine the inverse of the stiffness matrix.
(12 marks)
(iii) Determine the tip deflection of the beam to the nearest millimetre and sketch the deflection of the beam.
(4 marks)

School of Engineering
BEng(Hons) in Civil Engineering
Semester One Examinations 2018/2019
Engineering Mathematics and Structures
Module No: CIE5004
Question 5 continued....

Fig. Q5. 1

BEng (Hons) Degree in Civil Engineering

CIE5004 - Engineering Mathematics

Formula Sheet

1. Standard Deviation
$\mathrm{SD}=\sqrt{\frac{\sum(\mathrm{x}-\overline{\mathrm{x}})^{2}}{\mathrm{n}}}$
2. χ^{2} test

$$
\chi^{2}=\sum \frac{(\mathrm{O}-\mathrm{E})^{2}}{\mathrm{E}} \quad v=\mathrm{k}-\mathrm{m}
$$

3. Baye's Equation

$$
\operatorname{Pr}\left(A_{k} \mid E\right)=\frac{\operatorname{Pr}\left(A_{k}\right) \times \operatorname{Pr}\left(E \mid A_{k}\right)}{\operatorname{Pr}(E)}
$$

Standard Normal Distribution Table

\[

\]

