UNIVERSITY OF BOLTON

WESTERN INTERNATIONAL COLLEGE FZE

BEng (HONS) CIVIL ENGINEERING

SEMESTER ONE EXAMINATION 2018/2019

ENGINEERING MATHEMATICS AND STRUCTURES

MODULE NO: CIE5004

Date: Tuesday 8th January 2019

INSTRUCTIONS TO CANDIDATES:

Time: 10.00am to 1.00pm

There are FOUR questions on this paper. Answer ALL questions.
Answer Section A and Section B questions in separate answer books.

Marks for parts of questions are shown in the brackets.

This examination paper carries a total of 100 marks.

Formula sheet to be used in Section B is attached on Page 7 of this paper.

All working must be shown. A numerical solution to a question obtained by programming an electronic calculator will not be accepted.

Western International College FZE
BEng (Hons) Civil Engineering
Semester 1 Examination 2018/2019
Engineering Mathematics and Structures
Module No. CIE5004

SECTION A: STRUCTURES

Question 1

A three-pin frame is shown in Figure Q1. The frame is supported at A and G by pins, and a third pin is positioned at D . There is a vertical load of 15 kN acting at C and a horizontal load of 40 kN acting at point F.
a. Determine the magnitudes and directions of the vertical and horizontal reactions at A and G.
(4 marks)
b. Draw the Axial Force Diagram.
c. Draw the Shear Force Diagram.
d. Draw the Bending Moment Diagram.

For parts b, c and d, show all important values on the diagrams and produce accompanying calculations to show how these values have been derived.

Total 25 marks

Figure Q1

Western International College FZE
BEng (Hons) Civil Engineering
Semester 1 Examination 2018/2019
Engineering Mathematics and Structures
Module No. CIE5004

Question 2

Figure Q2
Figure Q2 shows a beam ABCD which is simply supported with a span of 10.0 metres. The beam carries two point loads as shown in Figure Q2. The beam has uniform rigidity $\mathrm{El}=20,000 \mathrm{kNm}^{2}$.
a. Use the method of Macaulay to calculate
i. Rotation (Slope) at A
ii. Vertical Deflection at B
(17 marks)
b. Estimate the value of x at which the slope will be zero and hence find the maximum deflection of the beam.

Formula for the deflection of a beam: $M=-E I \frac{d^{2} v}{d x^{2}}$

End of section A

Please turn the page for Section B
Please turn the page

Western International College FZE
BEng (Hons) Civil Engineering
Semester 1 Examination 2018/2019
Engineering Mathematics and Structures
Module No. CIE5004

SECTION B: ENGINEERING MATHEMATICS

Question 3

a. The Table Q3(a) shows the volumes of concrete produced daily in m^{3} from a plant during two weeks.
i. Using coding method determine the mean
ii. Determine the standard deviation
iii. Check whether there is any outlier and list if any.

Table Q3(a)

Volume of concrete produced daily in $\mathbf{~ m}^{\mathbf{3}}$	
60	39
52	58
69	57
48	35
64	40
80	65
63	42

b. The time taken in minutes for the failure of 50 concrete cube specimens is measured in minutes and the results are as shown in Table Q3(b) below. Produce a suitable frequency distribution with about seven classes for this data on the graph paper provided and by using histogram of the data find the mode.

Table Q3(b): Time in minutes

8.0	8.6	8.2	7.5	8.0	9.1	8.5	7.6	8.2	7.8
8.3	7.1	8.1	8.3	8.7	7.8	8.7	8.5	8.4	8.5
7.7	8.4	7.9	8.8	7.2	8.1	7.8	8.2	7.7	7.5
8.1	7.4	8.8	8.0	8.4	8.5	8.1	7.3	9.0	8.6
7.4	8.2	8.4	7.7	8.3	8.2	7.9	8.5	7.9	8.0

Western International College FZE
BEng (Hons) Civil Engineering
Semester 1 Examination 2018/2019
Engineering Mathematics and Structures
Module No. CIE5004

Question 4

a. The probability of a structural component failing in a year due to excessive temperature is $1 / 30$, due to excessive vibration is $1 / 15$ and due to excessive humidity is $1 / 55$. Determine the probability that during a year the component
i. Fails due to excessive temperature and excessive vibration
ii. Fails due to excessive vibration or excessive humidity
iii. Will not fail because of both excessive temperature and excessive humidity iv. Will not fail because of excessive temperature and vibration
b. An inspection showed that out of 60 precast concrete piles produced from a plant, six are damaged during transporting it to the construction site. If six piles are drawn at random determine the probabilities that in the sample
i. Two are damaged
ii.Fewer than three are damaged
(3 marks)
c. If 5% of compression testing machines produced by a factory are defective, determine the probability that in a sample of 25 compression testing machines
i. Two are defective
ii. More than two are defective
d. A steel column cannot be used in a certain construction if it has a diameter of less than 69 cm . In a batch of 350 columns, the mean diameter is 75 cm and the standard deviation is 2.8 cm . Assuming the diameters are uniformly distributed, determine how many columns cannot be used for the construction. The standard normal distribution chart is provided on page 8.
(2 marks)
e. The quality assurance department of a firm selects 250 capacitors at random from a large quantity of them and carries out various tests on them. The results obtained are as shown in Table 4(a)

Western International College FZE
BEng (Hons) Civil Engineering
Semester 1 Examination 2018/2019
Engineering Mathematics and Structures
Module No. CIE5004

Question 4 Continued

Table 4(a): Test Results

Number of tests failed	Number of capacitors
0	113
1	77
2	39
3	16
4	4
5	1
6 and above	0

Test the goodness of fit of this distribution to a Poisson distribution at a level of significance of 0.05 . The χ^{2} distribution chart is provided on page 9 .
(12 marks)
Total 25 marks

END OF SECTION B

END OF QUESTIONS

Western International College FZE
BEng (Hons) Civil Engineering
Semester 1 Examination 2018/2019
Engineering Mathematics and Structures
Module No. CIE5004

Formula Sheet

1. Mean and Standard Deviation

For n values $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$

$$
\bar{x}=\frac{\sum x}{n} ; \quad s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n}}
$$

1. Chi square test

$$
\lambda^{2}=\frac{\sum(O-E)^{2}}{E} \quad \mathrm{v}=(\mathrm{k}-\mathrm{m})
$$

3 . Binomial expansion

$$
(\mathrm{q}+\mathrm{p})^{\mathrm{n}}=\mathrm{q}^{\mathrm{n}}+\mathrm{nq}{ }^{\mathrm{n}-1} \mathrm{p}+\frac{\mathrm{n}(\mathrm{n}-1) \mathrm{q}^{\mathrm{n}-2} \mathrm{p}^{2}}{2!}+\frac{\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2) \mathrm{q}^{\mathrm{n}-3} \mathrm{p}^{3}}{3!}+\ldots .
$$

4. Normal Distribution

$$
z=\frac{x-\mu}{\sigma}
$$

5. Poisson Distribution

$$
\operatorname{Pr}(\mathrm{x})=\mathrm{e}^{-\mu} \mu^{\mathrm{x}} / \mathrm{x}!
$$

Page 8 of 9
Western International College FZE
BEng (Hons) Civil Engineering
Semester 1 Examination 2018/2019
Engineering Mathematics and Structures
Module No. CIE5004

Please turn the page

Western International College FZE
BEng (Hons) Civil Engineering
Semester 1 Examination 2018/2019

Engineering Mathematics and Structures

Module No. CIE5004

END OF PAPER

