OFF CAMPUS DIVISION

STUDY WORLD LANKA CAMPUS

BENG(HONS) MECHANICAL ENGINEERING

SEMESTER ONE EXAMINATION 2018/2019

ADVANCED THERMOFLUIDS \& CONTROL SYSTEM
 MODULE NO: AME6005

Date: $\mathbf{3 0}^{\text {TH }}$ September 2018	Time: 09:00am - 11:00am
INSTRUCTIONS TO CANDIDATES:	There are 6 questions.
	Answer 4 questions.
	All questions carry equal marks. Attempt Three questions from PART A and one questions from PART B
CANDIDATES REQUIRE :	Marks for parts of questions are shown in brackets.
	Thermodynamic properties of fluids tables are provided

Off Campus Division
Study World Lanka Campus
BENG (HONS) MECHANICAL ENGINEERING
Semester 1 Examinations 2018/19
Advanced Thermo fluids \& Control System
Module No. AME 6005

PART A

Q1. a) Water at $25^{\circ} \mathrm{C}$ flows steadily through the box shown in Figure Q1a, entering station-A at $2 \mathrm{~m} / \mathrm{s}$. Both entering and leaving stations are circular pipes with diameters 9 cm and 4 cm respectively. Calculate the horizontal and vertical forces required to hold the system against the momentum.

Figure Q1a.
(12 marks)
b) The pressure drop per unit length $\Delta \mathrm{p} / \mathrm{L}$ in a porous, rotating duct depends upon average velocity U, density ρ, viscosity μ, duct height h, wall injection velocity U_{i}, and rotation rate ω. Considering ρ, U and h as repeating variables defines in Buckingham pi theorem, express this relationship in dimensionless form.

Q2. a) Briefly explain following terms related to internal duct (pipe) flow.
i.Laminar and Turbulent flow
ii. Velocity boundary layer
iii. Entrance region
iv. Fully developed flow
(8 marks)
b) The system in Figure Q2b consists of 800 m of 4 cm cast-iron pipe, two 45° and six 90° flanged long-radius elbows, one fully open flanged globe valve, one gate valve, one angle valve and a sharp exit into a reservoir. If the elevation at point A is 100 m , what gage pressure is required at point A to deliver $0.006 \mathrm{~m}^{3} / \mathrm{s}$ of water at $25^{\circ} \mathrm{C}$ into the reservoir?

Figure Q2b
(17 marks)
Total 25 marks

Off Campus Division
Study World Lanka Campus
BENG (HONS) MECHANICAL ENGINEERING
Semester 1 Examinations 2018/19
Advanced Thermo fluids \& Control System
Module No. AME 6005
Q3. (a) A piston-cylinder device contains 0.8 kg of atmospheric air initially at 100 kPa and $27^{\circ} \mathrm{C}$. The atmospheric air is now compressed slowly in a Polytropic manner process during which PV ${ }^{1.3}=$ constant until the volume is reduced by one-third. Determine the work done and the heat transfer for this process.
(b) Steam flows steadily through an adiabatic turbine. The inlet conditions of the steam are $10 \mathrm{MPa}, 450^{\circ} \mathrm{C}$, and $100 \mathrm{~m} / \mathrm{s}$, and the exit conditions are $10 \mathrm{kPa}, 95$ percent quality, and $30 \mathrm{~m} / \mathrm{s}$. The mass flow rate of the steam is $16 \mathrm{~kg} / \mathrm{s}$. Determine
i.The change in kinetic energy
ii. The power output
iii. The turbine inlet and outlet areas

Figure Q3b
(12 marks)
Total 25 marks

Off Campus Division
Study World Lanka Campus
BENG (HONS) MECHANICAL ENGINEERING
Semester 1 Examinations 2018/19
Advanced Thermo fluids \& Control System
Module No. AME 6005
Q4. The gas-turbine portion of a combined gas-steam power plant has a pressure ratio of 15 . Air enters the compressor at 300 K at a rate of 14 kg / s and is heated to 1500 K in the combustion chamber. The combustion gases leaving the gas turbine are used to heat the steam to $400^{\circ} \mathrm{C}$ at 10 Mpa in a heat exchanger. The combustion gases leave the heat exchanger at 420 K . The steam leaving the turbine is condensed at 15 kPa . Assuming all the compression and expansion processes to be isentropic, For air, assume constant specific heats at room temperature. Determine,
i. Air compressor and gas turbine outlet air temperatures
ii. Gas power cycle net power output
iii. The mass flow rate of the steam
iv. The net power output of steam power cycle v. the thermal efficiency of the combined cycle.

Figure Q4

PART B

Q5. (a) Describe the importance of stability in control systems.
(b) For an automated control system open loop transfer function is given as follows. Considering unity feedback control,

$$
G(s)=\left(K_{P}+\frac{K_{I}}{s}\right) \frac{1}{s(s+2)}
$$

i. Find the characteristic equation of the system
ii. Referring RH criteria find the condition of stability related to K_{P} and K_{I}.
(12 marks)
I Draw the bode plot for below transfer function

$$
G(s) H(s)=\frac{14(s+9)^{2}}{(s+2)(s+5)(s+7)(s+13)}
$$

Q6. (a) Develop a state model for below transfer function following diagonal method used in state space analysis.

$$
T F=\frac{1}{(s+2)(s+5)(s+7)(s+13)}
$$

(b) i. Explain the physical meaning of PID controller referring sketches graphs.
ii. Write down three advantages of PID controller

Off Campus Division
Study World Lanka Campus
BENG (HONS) MECHANICAL ENGINEERING
Semester 1 Examinations 2018/19
Advanced Thermo fluids \& Control System
Module No. AME 6005

FORMULA SHEET

$$
\begin{gathered}
\mathrm{P}=\mathrm{F} / \mathrm{A}, \quad \rho=\mathrm{m} / \mathrm{v}, \quad \mathrm{~m}=\rho \mathrm{AV}, \quad \mathrm{P}=\mathrm{P}_{\mathrm{g}}+\mathrm{P}_{\mathrm{atm}}, \quad \mathrm{P}=\rho \mathrm{gh} \\
\mathrm{Q}-\mathrm{W}=\Delta \mathrm{U}+\Delta \mathrm{PE}+\Delta \mathrm{KE}, \quad \mathrm{~W}=\int \mathrm{PdV}, \quad \mathrm{P} \mathrm{~V}^{\mathrm{n}}=\mathrm{C} \\
\mathrm{~W}=\frac{\mathrm{P}_{1} \mathrm{~V}_{1}-\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{n}-1} \\
\mathrm{~W}=\mathrm{P}\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right) \\
W=P V \ln \left(\frac{V_{2}}{V_{1}}\right) \\
\mathrm{Q}=\mathrm{C}_{\mathrm{d}} \mathrm{~A} \sqrt{ } 2 \mathrm{gh} \\
V_{1}=C \sqrt{2 g h_{2}\left(\frac{\rho g_{m}}{\rho g}-1\right)}, \quad \sum \mathrm{F}=\frac{\Delta \mathrm{M}}{\Delta \mathrm{t}}=\Delta \mathrm{M}, \quad \mathrm{~F}=\rho \mathrm{QV}, \quad \tau=-(\partial \mathrm{p} / \partial \mathrm{x}) \mathrm{r} / 2 \\
\mathrm{Re}=\mathrm{V} \mathrm{D} \rho / \mu, \quad \Delta \mathrm{p}=(32 \mu \mathrm{VL}) / \mathrm{D}^{2}, \quad \mathrm{Q}=\mathrm{du}+\mathrm{dw}, \quad \mathrm{du}=\mathrm{CV} \mathrm{dT}, \quad \mathrm{dw}=\mathrm{pdv} \\
\mathrm{pv}=\mathrm{mRT}, \quad \mathrm{~h}=\mathrm{h}_{\mathrm{f}}+\mathrm{xhf}_{\mathrm{g}}, \quad \mathrm{~s}=\mathrm{s}_{\mathrm{f}}+\mathrm{xsf} \mathrm{f}_{\mathrm{g}}, \quad \mathrm{~V}=\mathrm{x} \mathrm{Vg}, \quad \dot{\mathrm{Q}}-\mathrm{w}=\sum \mathrm{mh}, \quad F=\frac{2 \pi L \mu}{L_{n}\left(\frac{R_{2}}{R_{3}}\right)}
\end{gathered}
$$

$F_{D}=\frac{1}{2} C D \rho \mathrm{u}^{2} s, \quad F_{L}=\frac{1}{2} \mathrm{C}_{\mathrm{L}} \rho u^{2} s, \quad S_{p}=\frac{d}{d s}(P+\rho g Z), \quad Q=\frac{\pi D^{4} \Delta p}{128 \mu L}$
$h_{f}=\frac{64}{R}\left(\frac{L}{D}\right)\left(\frac{\mathrm{v}^{2}}{2 g}\right)$,

$$
\begin{aligned}
& \mathrm{h}_{\mathrm{f}}=\frac{4 \mathrm{fLv} \mathrm{v}^{2}}{\mathrm{~d} 2 \mathrm{~g}} \\
& \\
& 16
\end{aligned}, \quad h_{m}=\frac{K \mathrm{v}^{2}}{2 g}, \quad h_{m}=\frac{k\left(V_{1}-V_{2}\right)^{2}}{2 g}
$$

$$
f=\frac{16}{R e}
$$

$\left.\eta=\left(1-\frac{T_{L}}{T_{H}}\right), \quad \mathrm{\eta}=\left(\mathrm{h}_{1}-\mathrm{h}_{2}\right) /\left(\mathrm{h}_{1}-\mathrm{h}_{\mathrm{f} 2}\right), \quad S_{g e n}=\left(S_{2}-S_{1}\right)\right)+\frac{Q}{T}$
$\mathrm{F}=\tau \pi \mathrm{DL}$
Blocks with feedback loop
$\mathrm{G}(\mathrm{s})=\frac{G o(s)}{1+G o(s) H(s)}$ (for a negative feedback)

Off Campus Division
Study World Lanka Campus
BENG (HONS) MECHANICAL ENGINEERING
Semester 1 Examinations 2018/19
Advanced Thermo fluids \& Control System
Module No. AME 6005
$\mathrm{G}(\mathrm{s})=\frac{G o(s)}{1-G o(s) H(s)}$ (for a positive feedback)

Steady-State Errors

$e_{s s}=\lim _{s \rightarrow 0}\left[s\left(1-G_{O}(s)\right) \theta_{i}(s)\right]$ (for an open-loop system)
$e_{s s}=\lim _{s \rightarrow 0}\left[s \frac{1}{1+G_{o}(s)} \theta_{i}(s)\right]$ (for the closed-loop system with a unity feedback)

Laplace Transforms Z Transforms

A unit impulse function 1

A unit step function
Exponential Function $\frac{1}{s+a}$

A unit ramp function

$$
\frac{\frac{1}{s^{2}}}{1-e^{-s t}} 1-z^{-1}
$$

Off Campus Division
Study World Lanka Campus
BENG (HONS) MECHANICAL ENGINEERING
Semester 1 Examinations 2018/19
Advanced Thermo fluids \& Control System
Module No. AME 6005

Recommended Roughness Values for Commercial Ducts

		ϵ		
Material	Condition	ft	mm	Uncertainty, \%
Steel	Sheet metal, new	0.00016	0.05	± 60
	Stainless, new	0.000007	0.002	± 50
	Commercial, new	0.00015	0.046	± 30
	Riveted	0.01	3.0	± 70
	Rusted	0.007	2.0	± 50
Iron	Cast, new	0.00085	0.26	± 50
	Wrought, new	0.00015	0.046	± 20
	Galvanized, new	0.0005	0.15	± 40
	Asphalted cast	0.0004	0.12	± 50
Brass	Drawn, new	0.000007	0.002	± 50
Plastic	Drawn tubing	0.000005	0.0015	± 60
Glass	-	$S m o o t h$	$S m o o t h$	
Concrete	Smoothed	0.00013	0.04	± 60
Rubber	Rough	0.007	2.0	± 50
Wood	Smoothed	0.000033	0.01	± 60
	Stave	0.0016	0.5	± 40

Resistance Coefficients $K=h_{m} /\left[V^{2} /(2 g)\right]$ for Open Valves, Elbows, and Tees

	Nominal diameter, in								
	Screwed				Flanged				
	$\frac{1}{2}$	1	2	4	1	2	4	8	20
Valves (fully open):									
Globe	14	8.2	6.9	5.7	13	8.5	6.0	5.8	5.5
Gate	0.30	0.24	0.16	0.11	0.80	0.35	0.16	0.07	0.03
Swing check	5.1	2.9	2.1	2.0	2.0	2.0	2.0	2.0	2.0
Angle	9.0	4.7	2.0	1.0	4.5	2.4	2.0	2.0	2.0
Elbows:									
45° regular	0.39	0.32	0.30	0.29					
45° long radius					0.21	0.20	0.19	0.16	0.14
90° regular	2.0	1.5	0.95	0.64	0.50	0.39	0.30	0.26	0.21
90° long radius	1.0	0.72	0.41	0.23	0.40	0.30	0.19	0.15	0.10
180° regular	2.0	1.5	0.95	0.64	0.41	0.35	0.30	0.25	0.20
180° long radius					0.40	0.30	0.21	0.15	0.10
Tees:									
Line flow	0.90	0.90	0.90	0.90	0.24	0.19	0.14	0.10	0.07
Branch flow	2.4	1.8	1.4	1.1	1.0	0.80	0.64	0.58	0.41

