UNIVERSITY OF BOLTON

OFF CAMPUS DIVISION

B.ENG. (HONS) MECHANICAL ENGINEERING

MALAYSIA - KTG

SEMESTER 1 EXAMINATION 2018/2019

ADVANCED THERMOFLUIDS AND CONTROL SYSTEMS

MODULE NO: AME6005

Date: Thursday 10th January 2019

Time: 3 Hours

INSTRUCTIONS TO CANDIDATES:

This question paper consists of Two sections: Section A and Section B.

Answer Two questions from each Section.

All questions carry equal marks.

Marks for parts of questions are shown in brackets.

For this examination you will be supplied with the following:

- -Steam tables
- -Moody chart
- -Formula sheet

This examination paper carries a total of 100 marks.

All working must be shown. A numerical solution to a question obtained by programming an electronic calculator will not be accepted.

SECTION A

[50 marks] Instruction: Answer **Two** questions.

QUESTION 1

The following diagram is for a combined gas – steam power plant system. Superheated steam is supplied from the steam generator to the steam turbine at 60 bar, 450°C and leaves as wet steam at 0.08 bar. The steam turbine has thermal efficiency of 50% and output power of 10 MW, calculate:

- (i) Assuming reversible adiabatic flows through the pump and turbine, determine the enthalpies at the inlets and out lets of pump and turbine.
- (8 marks) (8 marks) (6 marks)
- (iii) The heat transferred to the cooling water of the condenser.

(3 marks)

- (iv) The difference between the inlet and outlet temperatures of the condenser cooling water for water flow of 6 T/h. (Cp for water = $4.2 \times 10^3 \text{ kJ/Kg}$).
 - (4 marks)

(v) The power supplied to from the flue gases to the steam generator. (4 marks)

Total 25 marks

Please turn to the page

QUESTION 2

a) State the assumptions made in solving problems in heat exchangers.

(3 marks)

b) A counter flow double pipe heat exchanger is to heat water from 20 °C to 80 °C at a rate of 1.2 kg/s. The heating is to be accompanied by geothermal water available at 160 °C at a mass flow rate of 2 kg/s. The inner tube is thin walled and has diameter of 1.5 cm. If the overall heat transfer coefficient of the heat exchanger is 640 W/m².°C, determine the length of the heat exchanger required to achieve the desired heating using the effectiveness - NTU method. C_{ph} = 4.3 kJ/kg.°C ,C_{pc} = 4.18 kJ/kg.°C)

$$\mathsf{NTU} = \frac{1}{C-1} \ln \left(\frac{\varepsilon - 1}{\varepsilon c - 1} \right)$$

(22 marks)

Total 25 marks

QUESTION 3

- a) Define and explain the term Reynolds stress. What causes the friction factor to be higher in turbulent flow? (5 marks)
- b) Water at 15 °C ($\rho = 999.1 kg/m^3$) and $\mu = 1.138 \times 10^{-3}$ kg/m .s is flowing steadily in a 50 mm in diameter horizontal pipe made of stainless steel of roughness $\varepsilon = 0.002 mm$, at a rate of 0.005 m³/s. Determine the pressure drop, the head loss, and the required pumping power input for flow over a 60 m long of the pipe.

(20 marks)

Total 25 marks

Please turn to the page

SECTION B

[50 marks] Instruction: Answer **Two** questions.

QUESTION 4

For the control system is shown in Figure Q4.

Figure Q4

The controller is used in order to improve step response of the system.

a) For KI and KD are set to zero (controller becomes proportional controller), determine the range of Kp to fulfill less than 5% overshoot requirement.

(10 marks)

 b) Design PID controller to achieve maximum overshoot less than 5%, rise time tr less than 1 second and zero steady-state error for a unit step input.

(15 marks)

QUESTION 5

a) Analyse the stability of the sampled control system as shown in **Figure Q5**, when sampling time is

(i) T=0.5 sec.

(ii) T = 1 sec.

(19 marks)

Question 5 continued over the page

Please turn the page

Question 5 cont'd...

Figure Q5

b) If an 8 bits analogue to digital converter with the signal range between -5 V to +5 V.

Find

the resolution of the AD converter, (2 marks) (i) (ii) integer number represented a value of 2.5 Volts, (2 marks) (iii) the voltage does the integer 100 represent. (2 marks)

QUESTION 6

- a) Briefly explain the following three approaches for the analysis and design of closed loop control systems
 - Laplace transform. (2 marks) (i) (ii) The frequency responses technique. (2 marks) (2 marks)
 - (iii) The state space techniques.
- b) Consider the mass-spring damper system depicted in Figure Q6.

Figure Q6

Question 6 continued over the page

Please turn the page

Question 6 cont'd...

- (i) Derive the differential equations describing the behaviour of the system. (8 marks)
- (ii) Select the state variables and transfer the differential equations obtained from Figure Q6 above to the relevant first-order differential equations.
 (2 marks)
- (iii) Determine the state space equations of the system.

Total 25 marks

(9 marks)

END OF QUESTIONS

Steam Tables SATURATED STEAM: PRESSURE TABLE

	<i>T</i> , °C	Volume, m3/kg		Energy, kJ/kg		Enthalpy, kJ/kg			Entropy, kJ/kg·K		
P, MPa		υ,	ve	м,	u _e	h	h _{tr}	h,	s_{f}	s _{je}	s_{ρ}
0.000611	0.01	0.001000	206.1	0.0	2375.3	0.0	2501.3	2501.3	0.0000	9.1571	9.1571
0.0008	3.8	0.001000	159.7	15.8	2380.5	15.8	2492.5	2508.3	0.0575	9.0007	9.0582
0.001	7.0	0.001000	129.2	29.3	2385.0	29.3	2484.9	2514.2	0.1059	8.8706	8.9765
0.0012	9.7	0.001000	108.7	40.6	2388.7	40.6	2478.5	2519.1	0,1460	8.7639	8.9099
0.0014	12.0	0.001001	93.92	50.3	2391.9	50.3	2473.1	2523.4	0.1802	8.6736	8.8538
0.0016	14.0	0.001001	82.76	58.9	2394.7	58.9	2468.2	2527.1	0.2101	8.5952	8.8053
0.0018	15.8	0.001001	74.03	66.5	2397.2	66.5	2464.0	2530.5	0.2367	8.5259	8.7626
0.002	17.5	0.001001	67.00	73.5	2399.5	73.5	2460.0	2533.5	0.2606	8.4639	8.7245
0.003	24.1	0.001003	45.67	101.0	2408.5	101.0	2444.5	2545.5	0.3544	8.2240	8.5784
0.004	29.0	0.001004	34.80	121.4	2415.2	121.4	2433.0	2554.4	0.4225	8.0529	8.4754
0.006	36.2	0.001006	23.74	151.5	2424.9	151.5	2415.9	2567.4	0.5208	7.8104	8.3312
0.008	41.5	0.001008	18.10	173.9	2432.1	173.9	2403.1	2577.0	0.5924	7.6371	8.2295
0.01	45.8	0.001010	14.67	191.8	2437.9	191.8	2392.8	2584.6	0.6491	7.5019	8.1510
0.012	49.4	0.001012	12.36	206.9	2442.7	206.9	2384.1	2591.0	0.6961	7.3910	8.0871
0.014	52.6	0.001013	10.69	220.0	2446.9	220.0	2376.6	2596.6	0.7365	7.2968	8.0333
0.016	55 3	0.001015	9.433	231.5	2450.5	231.5	2369.9	2601.4	0.7719	7.2149	7.9868
0.018	57.8	0.001016	8 445	241.9	2453.8	241.9	2363.9	2605.8	0.8034	7.1425	7.9459
0.02	60.1	0.001017	7.649	251.4	2456.7	251.4	2358 3	2609.7	0.8319	7.0774	7.9093
0.03	69.1	0.001022	5 229	289.2	2468.4	289.2	2336.1	2625.3	0.9439	6.8256	7.7695
0.04	75.9	0.001026	3 993	317.5	2477.0	317.6	23191	26367	1.0260	6 6 4 4 9	7 6709
0.06	85.9	0.001033	2 732	359.8	2489.6	350 8	2293.7	2653 5	1.1455	6 3873	7.5328
0.08	03.5	0.001039	2 087	301.6	2498.8	301.6	2274 1	2665.7	1 2331	6 2023	7.4354
0.1	99.6	0.001043	1.694	417.3	2506.1	417.4	2258 1	2675 5	1.3029	6.0573	7 3602
0.12	104.8	0.001047	1.428	430.2	2512.1	430 3	2244.2	2683.5	1.3611	5 9378	7 2980
0.14	109.3	0.001051	1 237	458.2	2517.3	458.4	2232.0	2690.4	1 4112	5,8360	7 2472
0.16	113.3	0.001054	1.091	475.2	2521.8	475 3	2221.2	2696.5	1.4553	5 7472	7 2025
0.18	116.0	0.001059	0.0775	.100 5	2525.0	400.7	2211.1	2701.8	1.40.49	5 6683	7 1631
0.7	120.2	0.001051	0.8857	504.5	2529.5	504.7	2201.9	2706.6	1.5305	\$ \$075	7 1280
0.3	133.5	0.001073	0.6059	561.1	2543.6	\$61.5	2163.9	2706.0	1.6722	5 3205	6 0027
0.4	143.6	0.001084	0.4625	604.3	2553.6	601.7	2133.8	2728 5	1.7770	\$ 1107	6 8067
0.4	158.0	0.001101	0.3157	669.9	2555.0	670.6	2086.2	2756.8	1.0316	4 8203	6 7600
0.0	170.4	0.001115	0.2404	720.2	2576.8	721.1	2048.0	2760.1	2.0466	4.6170	6 6636
1	170.0	0.0011127	0.1044	761.7	2593.6	762.8	2015.3	2779.1	2 1201	4.4492	6 5973
12	188.0	0.001120	0.1633	707.3	2565.0	702.6	1986.2	27784.8	2 2170	4 3072	6 5242
1.4	105.1	0.001149	0.1408	939.3	2500.0	930.3	1980.2	2700.0	3 3947	4.3072	6.4701
1.4	201.4	0.001149	0.1238	856.0	2596.0	0.50.5	1935.2	2790.0	2.2047	4.10,34	6.4226
1.8	207.2	0.001168	0.12.58	883.7	25508.4	0.00.0	1933.2	2794.0	2 2086	3.0916	6 3802
2	212.4	0.001177	0.00063	006.4	2598.4	009.0	1900.7	2700.5	2.3900	2 2020	6 3417
-	222.4	0.00111/7	0.05563	1004.9	2604.1	1008.4	1705.7	2199.5	2,4470	3.6939	6 1979
-	250.4	0.001210	0.000038	1004.0	2602.2	1002.3	1714.1	2801.4	2.0402	2 2720	6.0700
-	230.4	0.001232	0.03244	1205 4	2002.5	1007.5	1571.0	2001.4	2.0272	3.6139	5 8000
0	275.0	0.001319	0.03244	1205.4	2560.9	1215.5	13/1.0	2769.0	3.0275	2.0027	5.0900
10	295.1	0.001384	0.02352	1303.0	2509.8	1310.0	1217.1	2738.0	3.2015	2.3303	5,7440
12	324.9	0.001432	0.01803	1473.0	2544.4	1407.0	1317.1	2124.1	3.3003	1.0062	5,0149
14	324.8	0.001527	0.01426	14/2.9	2313.7	1491.5	1055.6	2084.9	3,4970	1.9903	5.4933
14	3.30.8	0.001611	0.01149	1548.0	2470.8	15/1.1	020.7	2037.0	3.6240	1.7486	5.3/20
10	347.4	0.001/11	0.009307	1622.7	2431.8	1000.0	930.7	2580.7	3.7408	1.4990	5.2404
18	337.1	0.001840	0.007491	1098.9	23/4.4	1732.0	111.2	2509.2	3.8/22	1.2532	5.1054
20	305.8	0.002036	0.005836	1785.6	2293.2	1820.3	583.7	2410.0	4.0146	0.9135	4.9281
22.088	374.136	0.003155	0.003155	2029.6	2029.6	2099.3	0.0	2099.3	4,4305	0.0000	4,4305

SOURCES: Keenan, Keyes, Hill, and Moore, Steam Tables, Wiley, New York, 1969; G. J. Van Wylen and R. E. Sonntag, Fundamentals of Classical Thermodynamics, Wiley, New York, 1973.

- SUPERHEATED STEAM TABLE

P = 6 MPa				P = 7 MPa				P = 8 MPa						
T ℃	û m³Ag	û kJ/kg	ĥ kJ/kg	₿ kJ∕kg K	$\overline{T}_{^{\circ}C}$	∂ m³/kg	û kJ/kg	ĥ kJ/kg	ŝ kJ/kg K	T °C	û m³/kg	û kJ/kg	ĥ kJ/kg	ĵ kJ/kg K
sat	0.03244	2589.7	2784.3	5.8891	sat	0.02737	2580.5	2772.1	5.8132	sat	0.02352	2569.8	2757.9	5.7431
300	0.03616	2667.2	2884.2	6.0673	300	0.02947	2632.1	2838.4	5.9304	300	0.02426	2590.9	2785.0	5.7905
350	0.04223	2789.6	3043.0	6.3334	350	0.03524	2769.3	3016.0	6.2282	350	0.02995	2747.7	2987.3	6.1300
400	0.04739	2892.8	3177.2	6.5407	400	0.03993	2878.6	3158.1	6.4477	400	0.03432	2863.8	3138.3	6.3633
450	0.05214	2968.9	3301.8	6.7192	450	0.04416	2077.9	3287.0	6.6326	450	0.03817	2966.7	3272.0	6.5550
500	0.05665	3082.2	3422.1	6.8802	500	0.04814	3073.3	3410.3	6.7974	500	0.04175	3064.3	3398.3	6.7239
550	0.06101	3174.6	3540.6	7.0287	550	0.05195	3167.2	3530.9	6.9486	550	0.04516	3159.8	3521.0	6.8778
600	0.06525	3266.9	3658.4	7.1676	600	0.05565	3260.7	3650.3	7.0594	600	0.04845	3254.4	3642.0	7.0205
700	0.07352	3453.2	3894.3	7.4234	700	0.06283	3448.6	3888.4	7.3476	700	0.05481	3444.0	3882.5	7.2812
800	0.08160	3643.1	4132.7	7.6566	800	0.06981	3639.6	4128.3	7.5822	800	0.06097	3636.1	4123.8	7.5173
900	0.08958	3837.8	4375.3	7.8727	900	0.07669	3835.0	4371.8	7.7991	900	0.06702	3832.1	4368.3	7.7350
1000	0.09749	4037.8	4622.7	8.0751	1000	0.08350	4035.3	4619.8	8.0020	1000	0.07301	4032.8	4616.9	7.9384
1100	0.10536	4243.3	4875.4	8.2661	1100	0.09027	4240.9	4872.8	8.1933	1100	0.07896	4238.6	4870.3	8.1299
1200	0.11321	4454.0	5133.3	8.4473	1200	0.09703	4451.7	5130.9	8.3747	1200	0.08489	4449.4	5128.5	8.3115
1300	0.12106	4669.6	5396.0	8.6199	1300	0.10377	4667.3	5393.7	8.5472	1300	0.09080	4665.0	5391.5	8.4842

Laplace transform $f(s)$	Time function $f(t)$ $t > 0$	$\frac{z \text{-transform}}{f(z)}$	Modified z-transform $f(z,m)$	-
$\frac{1}{s}$	$u_{\rm s}(t)$	$\frac{z}{z-1}$	$\frac{1}{z-1}$	
$\frac{1}{s^2}$	t	$\frac{Tz}{(z-1)^2}$	$\frac{mT}{(z-1)}+\frac{T}{(z-1)^2}$	-
$\frac{2}{s^3}$	<i>t</i> ²	$\frac{T^2z(z+1)}{(z-1)^3}$	$T^{2}\left(\frac{m^{2}}{(z-1)}-\frac{2m+1}{(z-1)^{2}}+\frac{2}{(z-1)^{3}}\right)$	
$\frac{1}{s+a}$	e ^{-at}	$\frac{z}{z - e^{-aT}}$	$\frac{e^{-amT}}{z - e^{-aT}}$	
$\frac{1}{(s+a)^2}$	te ^{-at}	$\frac{Tze^{-aT}}{(z-e^{-aT})^2}$	$\frac{Te^{-amT}(e^{-aT} + m(z - e^{-aT}))}{(z - e^{-aT})^2}$	
$\frac{a}{s(s+a)}$	$1 - e^{-at}$	$\frac{z(1 - e^{-aT})}{(z - 1)(z - e^{-aT})}$	$\frac{1}{(z-1)} - \frac{\mathrm{e}^{-amT}}{z-\mathrm{e}^{-aT}}$	
$\frac{1}{(s+a)(s+b)}$	$\frac{1}{(b-a)} \left(\mathrm{e}^{-at} - \mathrm{e}^{-bt} \right)$	$\frac{1}{(b-a)}\left(\frac{z}{z-e^{-aT}}-\frac{z}{z-e^{-bT}}\right)$	$\int \frac{1}{b-a} \left(\frac{e^{-amT}}{z-e^{-aT}} - \frac{e^{-bmT}}{z-e^{-bT}} \right)$	
$\frac{a}{s^2(s+a)}$	$t-\frac{1}{a}\left(1-\mathrm{e}^{-at}\right)$	$\frac{Tz}{(z-1)^2} - \frac{(1-e^{-aT})z}{a(z-1)(z-e^{-aT})}$	$\frac{T}{(z-1)^2} + \frac{amT-1}{a(z-1)} + \frac{e^{-amT}}{a(z-e^{-aT})}$	
$\frac{a}{s^2 + a^2}$	sin(at)	$\frac{z\sin(aT)}{z^2-2z\cos(aT)+1}$	$\frac{z\sin(amT) + \sin(1-m)aT}{z^2 - 2z\cos(aT) + 1}$	

3- Laplace and Z transform table.

Step response formula

$$T_{p} = \frac{\pi}{\omega_{n}\sqrt{(1-\zeta^{2})}}$$

$$PO = 100 e^{-\zeta \pi / \sqrt{(1-\zeta^{2})}}$$

$$T_{r} = \frac{2.16 \zeta + 0.60}{\omega_{n}}$$

$$T_{s} = \frac{4}{\zeta \omega_{n}}$$