UNIVERSITY OF BOLTON

OFF-CAMPUS DIVISION

B.ENG. (HONS) MECHANICAL ENGINEERING

MALAYSIA - KTG

SEMESTER 1 EXAMINATION 2018/2019

MECHANICS OF MATERIALS AND MACHINES

MODULE NO: AME 5002

Date: Wednesday 9 ${ }^{\text {th }}$ January 2019 Time: 2 Hours

INSTRUCTIONS TO CANDIDATES: There are FOUR questions.
Answer ALL questions.
All questions carry equal marks.
Marks for parts of questions are shown in brackets.

This examination paper carries a total of 100 marks.

All working must be shown. A numerical solution to a question obtained by programming an electronic calculator will not be accepted.

Off-Campus Division

B.Eng (Hons) Mechanical Engineering Semester 1 Examination 2018/2019
Mechanics of Materials and Machines
Module No. AME5002

Q1. The plane element in Figure Q1 is subjected to the stresses shown.

Figure Q1
(a) Create a drawing of the Mohr's Circle for the element.
(b) Evaluate the principle stresses.
(c) Solve the maximum possible shear stress.
(d) Solve the angle of the plane of maximum positive shear stress with respect to the x-plane. Generate a sketch of the element with the orientation of this plane.

Off-Campus Division
B.Eng (Hons) Mechanical Engineering

Semester 1 Examination 2018/2019
Mechanics of Materials and Machines
Module No. AME5002

Q2. The beam ABCD as shown in Figure Q2 has a span of 14 m and is simply-supported at both ends.
$2 \mathrm{kN} / \mathrm{m}$

All dimensions in m
Figure Q2
Use Macaulay's method to evaluate the deflection at the centre of the span (position C).
[The flexural rigidity of the beam $E I$ is 8×10^{4}].
Total 25 marks

Off-Campus Division

B.Eng (Hons) Mechanical Engineering Semester 1 Examination 2018/2019
Mechanics of Materials and Machines
Module No. AME5002

Q3. There is a 5 m long steel strut of circular cross-section with the outer diameter of 80 mm and inside diameter of 70 mm . One of the steel strut is subjected to the line of action of 60 kN of the thrust parallel to the unstrained line of the strut, but not coincide with it. With the load, the steel strut possesses the maximum deflection expressed as:

$$
y_{\max }=e\left[\sec \left(\frac{\alpha L}{2}\right)-1\right]
$$

where e is the eccentricity of the compressive which is 25 mm , axial load which acts parallel to the axis of the strut, and $\alpha=$ $\sqrt{P / E I}$ where P is the applied load, E is Young's modulus of the material, and I is the second moment of area. The ends are assumed to be hinged. Assume $E=209$ GPa for steel. Solve the maximum compressive stress of the strut.

Off-Campus Division

B.Eng (Hons) Mechanical Engineering Semester 1 Examination 2018/2019
Mechanics of Materials and Machines
Module No. AME5002

Q4. The 150 N piston is supported by a spring of modulus $k=300$ N / m. A dashpot of damping coefficient $c=90 \mathrm{Ns} / \mathrm{m}$ acts in parallel with the spring. A fluctuating pressure $p=0.8 \sin 30 t$ in $\mathrm{N} / \mathrm{m}^{2}$ acts on the piston, whose top surface area is $95 \mathrm{~m}^{2}$. Evaluate the steady-state displacement as a function of time and the maximum force transmitted to the base.

Total 25 marks

Off-Campus Division
B.Eng (Hons) Mechanical Engineering Semester 1 Examination 2018/2019
Mechanics of Materials and Machines
Module No. AME5002

Formula Sheet

1. Deflection

$$
\begin{aligned}
& M_{x x}=E I \frac{d^{2} y}{d x^{2}} \\
& b^{2} \quad \frac{b^{4}}{12} \\
& \pi a b \\
& \frac{\pi}{4} a^{3} b
\end{aligned}
$$

2. Plane stress

Stresses in function of the angle θ :

$$
\begin{aligned}
& \sigma_{x}(\theta)=\frac{\sigma_{x}+\sigma_{y}}{2}+\frac{\sigma_{x}-\sigma_{y}}{2} \cos (2 \theta)+\tau_{x y} \sin (2 \theta) \\
& \sigma_{y}(\theta)=\frac{\sigma_{x}+\sigma_{y}}{2}-\frac{\sigma_{x}-\sigma_{y}}{2} \cos (2 \theta)-\tau_{x y} \sin (2 \theta) \\
& \tau_{x y}(\theta)=-\frac{\sigma_{x}-\sigma_{y}}{2} \sin (2 \theta)+\frac{\sigma_{x}-\sigma_{y}}{2} \cos (2 \theta)
\end{aligned}
$$

Principal stresses:

$$
\sigma_{1,2}=\frac{\sigma_{x}+\sigma_{y}}{2} \pm \frac{1}{2} \sqrt{\left(\sigma_{x}-\sigma_{y}^{2}\right)^{2}+4 \tau_{x y}^{2}}
$$

Off-Campus Division
B.Eng (Hons) Mechanical Engineering Semester 1 Examination 2018/2019
Mechanics of Materials and Machines
Module No. AME5002

$$
\begin{aligned}
& \tau_{\max }=\frac{1}{2} \sqrt{\left(\sigma_{x}-\sigma_{y}^{2}\right)^{2}+4 \tau_{x y}^{2}} \\
& \tan 2 \theta=\frac{2 \tau_{x y}}{\sigma_{x}-\sigma_{y}}
\end{aligned}
$$

3. Lame's equation

$$
\begin{aligned}
& \sigma_{C}=a+\frac{b}{r^{2}} \\
& \sigma_{R}=a-\frac{b}{r^{2}} \\
& \sigma_{L}=\frac{P_{1} R_{1}^{2}-P_{2} R_{2}^{2}}{\left(R_{2}^{2}-R_{1}^{2}\right)} \\
& \tau_{\max }=\frac{\sigma_{c}-\sigma_{r}}{2}=\frac{b}{r^{2}}
\end{aligned}
$$

The corresponding strains format is:

$$
\begin{aligned}
& \varepsilon_{c}=\frac{1}{E}\left[\sigma_{c}-v\left(\sigma_{r}+\sigma_{l}\right)\right] \\
& \varepsilon_{r}=\frac{1}{E}\left[\sigma_{r}-v\left(\sigma_{c}+\sigma_{l}\right)\right] \\
& \varepsilon_{l}=\frac{1}{E}\left[\sigma_{l}-v\left(\sigma_{c}+\sigma_{r}\right)\right]
\end{aligned}
$$

4. Vibrations

Free vibrations:

$$
f=\frac{1}{T} \quad \omega_{n}=2 \pi f=\sqrt{\frac{k}{M}}
$$

Damped vibration:

$$
f_{d}=\frac{\omega_{d}}{2 \pi} \quad c_{c}=\sqrt{4 M k} \quad \delta=\frac{c}{c_{c}}=\frac{c}{2 k} \omega_{n}
$$

Off-Campus Division

B.Eng (Hons) Mechanical Engineering

Semester 1 Examination 2018/2019
Mechanics of Materials and Machines
Module No. AME5002

$$
\begin{aligned}
& \omega_{d}=\omega_{n} \sqrt{1-\delta^{2}} \\
& \ln \left(\frac{x_{1}}{x_{2}}\right)=\frac{2 \pi \delta}{\sqrt{1-\delta^{2}}} \\
& x=x_{0} \cos \omega_{n} t+\frac{\dot{x}_{0}}{\omega_{n}} \sin \omega_{n} t \\
& x=\sqrt{x_{0}^{2}+\left(\frac{\dot{x}_{0}}{\omega_{n}}\right)^{2}} \sin \left[\omega_{n} t+\tan ^{-1}\left(\frac{x_{0} \omega_{n}}{\dot{x}_{0}}\right)\right] \\
& X=\frac{F_{0} / k}{\left\{\left[1-\left(\omega / \omega_{n}\right)^{2}\right]^{2}+\left[2 \zeta \omega / \omega_{n}\right]^{2}\right\}} \\
& \phi=\tan ^{-1}\left[\frac{2 \zeta \omega / \omega_{n}}{1-\left(\omega / \omega_{n}\right)^{2}}\right] \\
& x_{p}=X \sin (\omega t-\phi) \\
& F_{t r}=k x_{p}+c \dot{x}_{p} \\
& F_{t r, m a x}=\sqrt{(k X)^{2}+(c \omega X)^{2}}
\end{aligned}
$$

5. Differential equation

Homogeneous form:

$$
a \ddot{y}+b \dot{y}+c y=0
$$

Characteristic equation:

$$
a \lambda^{2}+b \lambda+c=0
$$

If $b^{2}-4 a c>0, \lambda_{1}$ and λ_{2} are distinct real numbers then the general solution of the differential equation is:

$$
y(t)=A e^{\lambda_{1} t}+B e^{\lambda_{2} t}
$$

A and B are constant.
If $b^{2}-4 a c=0, \lambda_{1}=\lambda_{2}=\lambda$ are distinct real numbers then the general solution of the differential equation is:

$$
y(t)=e^{\lambda t}(A+B x)
$$

Off-Campus Division
B.Eng (Hons) Mechanical Engineering

Semester 1 Examination 2018/2019
Mechanics of Materials and Machines
Module No. AME5002
A and B are constant.
If $b^{2}-4 a c<0, \lambda_{1}$ and λ_{2} are complex numbers then the general solution of the differential equation is:
$y(t)=e^{\alpha t}[A \cos (\beta t)+B \sin (\beta t)]$
$\alpha=-\frac{b}{2 a}$
$\beta=\frac{\sqrt{4 a c-b^{2}}}{2 a}$
A and B are constant.
6. Asymmetrical bending
$I_{u, v}=\frac{1}{2}\left(I_{x x}+I_{y y}\right) \pm \frac{1}{2}\left(I_{x x}-I_{y y}\right) \sec 2 \theta$
$\tan 2 \theta=\frac{2 I_{x y}}{I_{y y}-I_{x x}}$
$I_{x y}=A h k$
$I_{u}+I_{v}=I_{x x}+I_{y y}$
$\sigma=\frac{M_{v} U}{I_{v}}+\frac{M_{u} V}{I_{u}}$
$\sigma_{\text {bending }}=\frac{M_{y} z}{I_{y}}-\frac{M_{z} y}{I_{z}}$
7. Stress
$\sigma=\frac{F}{A}$

8. Hooke's law

$$
\begin{aligned}
& E=\frac{\sigma}{\varepsilon} \\
& \varepsilon=\frac{\Delta L}{L}
\end{aligned}
$$

Off-Campus Division
B.Eng (Hons) Mechanical Engineering

Semester 1 Examination 2018/2019
Mechanics of Materials and Machines
Module No. AME5002

9. Beam bending equation

$$
\frac{M}{I}=\frac{\sigma}{y}=\frac{E}{R}
$$

10. Elasticity - finding the direction vectors

$$
\begin{aligned}
& {\left[\begin{array}{l}
S_{x} \\
S_{y} \\
S_{z}
\end{array}\right]=\text { (Stress tensor) }\left(\begin{array}{c}
l \\
m \\
n
\end{array}\right)} \\
& k=\frac{1}{\sqrt{a^{2}+b^{2}+c^{2}}}
\end{aligned}
$$

where a, b, and c are the co-factors of the eigenvalue stress tensor.

$$
\begin{array}{ll}
l=a k & l=\cos \alpha \\
m=b k & m=\cos \theta \\
n=c k & n=\cos \varphi
\end{array}
$$

11. Principal stresses and Mohr's Circle

$$
\begin{aligned}
& \tau_{12}=\frac{\sigma_{1}-\sigma_{2}}{2} \\
& \tau_{13}=\frac{\sigma_{1}-\sigma_{3}}{2} \\
& \tau_{23}=\frac{\sigma_{2}-\sigma_{3}}{2}
\end{aligned}
$$

12. Yield criterion

Von Mises:

Off-Campus Division
B.Eng (Hons) Mechanical Engineering

Semester 1 Examination 2018/2019
Mechanics of Materials and Machines
Module No. AME5002

$$
\sigma_{v m}=\frac{1}{\sqrt{2}}\left[\left(\sigma_{1}-\sigma_{2}\right)^{2}+\left(\sigma_{2}-\sigma_{3}\right)^{2}+\left(\sigma_{3}-\sigma_{1}\right)^{2}\right]^{1 / 2}
$$

Tresca:

$$
\begin{aligned}
& \sigma_{3} \geq \sigma_{2} \geq \sigma_{1} \\
& \sigma_{t r}=2 \tau_{\max } \\
& \tau_{\max }=\max \left(\frac{\left|\sigma_{1}-\sigma_{2}\right|}{2} ; \frac{\left|\sigma_{1}-\sigma_{3}\right|}{2} ; \frac{\left|\sigma_{3}-\sigma_{2}\right|}{2}\right) \\
& \frac{\sigma_{v m}}{\sigma_{t r}}=\frac{\sqrt{3}}{2}
\end{aligned}
$$

13. Quadratic equation: $a x^{2}+b x+c=0$

$$
x_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

14. Allowable stress

$$
\sigma_{\text {allowable }}=\frac{\sigma_{\text {yield }}}{\text { Factor of safety }}
$$

15. Strut

$$
k=\sqrt{\frac{I}{A}}
$$

Euler validity:

$$
\sigma_{E}=\frac{n \pi^{2} E}{(L / k)^{2}}
$$

Rankine-Gordon:

$$
\sigma_{R}=\frac{\sigma}{1+c / n(L / k)^{2}}
$$

Off-Campus Division

B.Eng (Hons) Mechanical Engineering

Semester 1 Examination 2018/2019
Mechanics of Materials and Machines
Module No. AME5002

Slenderness ratio $=S R=\frac{L_{e}}{k} \geq \pi \sqrt{\frac{E}{\sigma_{\text {yield }}}}$

Description	Schematic	Critical buckling load $\boldsymbol{P}_{\boldsymbol{c}}$	Effective length $\boldsymbol{L}_{\text {eff }}$	
Free-fixed				
			$P_{c}=\frac{\pi^{2} E I}{4 l^{2}}$	$2 l$

Hingedhinged

Hingedhinged, initially

curved
Fixed-

Fixed-fixed

Studying Rankine's formula,

$$
P_{\text {Rankine }}=\frac{\sigma_{c} A}{1+a\left(\frac{l_{e}}{k}\right)^{2}}
$$

We find

Off-Campus Division
B.Eng (Hons) Mechanical Engineering

Semester 1 Examination 2018/2019
Mechanics of Materials and Machines
Module No. AME5002

$$
P_{\text {Rankine }}=\frac{\text { Crushing load }}{1+a\left(\frac{l_{e}}{k}\right)^{2}}
$$

The factor $1+a\left(l_{e} / k\right)^{2}$ has thus been introduced to take into account the buckling effect.

$$
a=\frac{\sigma_{c}}{\pi^{2} E}
$$

16. Composite materials

$$
\begin{aligned}
& \sigma=\frac{M y}{I} \\
& E=\eta V_{f} E_{f}+\left(1-V_{f}\right) E_{m} \\
& \sigma=E \varepsilon
\end{aligned}
$$

