SCHOOL OF ENGINEERING

B.Eng. (Hons) MECHANICAL ENGINEERING

SEMESTER 1 EXAMINATIONS 2018/19

ENGINEERING PRINCIPLES 1

MODULE NO: AME4062

INSTRUCTIONS TO CANDIDATES: 1. There are FOUR questions.
2. Answer all questions.
3. Maximum marks for each part/question are shown in brackets.

1. (a) The expression $12 \cos x+5 \sin x$ can be written in the form $R \cos (x-\alpha)$ with $-\pi \leq \alpha \leq \pi$. Determine the values of R and α (in radians) correct to 3 decimal places.
(b) With the aid of suitable diagrams, find all of the solutions of the following equations in the given interval to two decimal places:
(i) $\quad \sin x=\frac{\sqrt{3}}{2}$
for
$0 \leq x<2 \pi$
(2 marks)
(ii) $\tan x+3 \cot x=5 \sec x$ for $0 \leq x<2 \pi$
(c) Solve the following equations giving your answer to two decimal places:
(i) $\quad 5^{x}=7$
(ii) $2^{x+2}=5^{x}$
(4 marks)
(iii) $3^{2 x} \times 4^{x+1}=5$

School of Engineering
B.Eng (Hons) Mechanical Engineering

Semester 1 Examinations 2018/19
Engineering Principles 1
AME4062
2. (a) Given that $\boldsymbol{a}=\left(\begin{array}{l}2 \\ -1 \\ 1\end{array}\right)$ and $\boldsymbol{b}=\left(\begin{array}{c}4 \\ -1 \\ -1\end{array}\right)$ find
(i) $3 \boldsymbol{a}+2 \boldsymbol{b}$
(2 marks)
(ii) $|\boldsymbol{a}|$ and $|\boldsymbol{b}|$
(4 marks)
(iii) $\boldsymbol{a} \cdot \boldsymbol{b}$
(2 marks)
(iv) The angle between \boldsymbol{a} and \boldsymbol{b}
(2 marks)
(v) $\boldsymbol{a} \times \boldsymbol{b}$
(5 marks)
(b) Given that $\boldsymbol{a}=\left(\begin{array}{l}x \\ y \\ z\end{array}\right), \boldsymbol{b}=\left(\begin{array}{c}y \\ z \\ x\end{array}\right), \boldsymbol{a} \times \boldsymbol{b}=\left(\begin{array}{l}3 \\ 1 \\ 5\end{array}\right)$ and $|\boldsymbol{a}|=3$, show that

$$
\boldsymbol{a} \cdot \boldsymbol{b}=18
$$

School of Engineering
B.Eng (Hons) Mechanical Engineering

Semester 1 Examinations 2018/19
Engineering Principles 1
AME4062
3.
(a) If $\boldsymbol{A}=\left(\begin{array}{rr}1 & 3 \\ -2 & 5\end{array}\right)$ and $\boldsymbol{B}=\left(\begin{array}{rr}3 & 4 \\ -1 & 5\end{array}\right)$ find
(i) $2 \boldsymbol{A}-3 \boldsymbol{B}$
(ii) $\boldsymbol{A B}$
(iii) $|\boldsymbol{A}|$
(iv) A^{-1}

Hence solve the set of simultaneous equations

$$
\begin{array}{r}
x+3 y=7 \\
-2 x+5 y=8
\end{array}
$$

(b) Solve $x^{2}-4 x+13=0$.

In parts (c) and (d) below, $z_{1}=2+j 11$ and $z_{2}=3-j 4$.
(c) Find
(i)
$2 z_{1}-3 z_{2}$
(2 marks)
(ii) $Z_{1} Z_{2}$
(2 marks)
(iii) \bar{Z}_{2}
(d) Find $\left|z_{2}\right|$ and $\arg \left(z_{2}\right)$ and hence write z_{2} in polar and exponential form.

School of Engineering
B.Eng (Hons) Mechanical Engineering

Semester 1 Examinations 2018/19
Engineering Principles 1
AME4062
4. (a) Use Pascal's Triangle to expand each of the following:
(i) $(a+b)^{4}$
(4 marks)
(ii) $(x-2)^{5}$
(6 marks)
(b) Using the binomial theorem, write down the binomial expansion for the following, up to and including the term x^{4} :
(i) $\sqrt[5]{1+x}$
(ii) $\frac{\sqrt{1+x}}{(1-x)^{4}}$

END OF QUESTIONS

School of Engineering
B.Eng (Hons) Mechanical Engineering

Semester 1 Examinations 2018/19
Engineering Principles 1
AME4062

Formula Sheet

1. Quadratic Equation

For the equation $a x^{2}+b x+c=0$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

2. Laws of Logarithms

$$
\begin{aligned}
& \log A B=\log A+\log B \\
& \log \frac{A}{B}=\log A-\log B \\
& \log A^{p}=p \log A
\end{aligned}
$$

3. Trigonometry

$$
\begin{aligned}
& \tan \theta \equiv \frac{\sin \theta}{\cos \theta} \\
& \cos ^{2} \theta+\sin ^{2} \theta \equiv 1 \\
& \tan ^{2} \theta+1 \equiv \sec ^{2} \theta \\
& \cot ^{2} \theta+1 \equiv \operatorname{cosec}^{2} \theta \\
& \sin (A \pm B) \equiv \sin A \cos B \pm \cos A \sin B \\
& \cos (A \pm B) \equiv \cos A \cos B \mp \sin A \sin B \\
& \tan (A \pm B) \equiv \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \\
& \sin 2 A \equiv 2 \sin A \cos A \\
& \cos 2 A \equiv \cos ^{2} A-\sin ^{2} A \equiv 2 \cos ^{2} A-1 \equiv 1-2 \sin ^{2} A \\
& \tan 2 A \equiv \frac{2 \tan A}{1-\tan A}
\end{aligned}
$$

School of Engineering
B.Eng (Hons) Mechanical Engineering

Semester 1 Examinations 2018/19
Engineering Principles 1
AME4062
4.

$$
\text { If } R \cos (x-a)=a \cos (x)+b \sin (x) \text { then }
$$

$$
a=\tan ^{-1}\left(\frac{b}{a}\right), \quad R=\sqrt{a^{2}+b^{2}}
$$

5. Complex Numbers

$$
\begin{aligned}
& r e^{j \theta}=r(\cos \theta+j \sin \theta) \\
& \cos \theta=\frac{e^{j \theta}+e^{-j \theta}}{2}
\end{aligned} \quad \sin \theta=\frac{e^{j \theta}-e^{-j \theta}}{2 j}, ~ l
$$

De Moivre’s Theorem

$$
(r(\cos \theta+j \sin \theta))^{n}=r^{n}(\cos n \theta+j \sin n \theta)
$$

