UNIVERSITY OF BOLTON ENG37

SCHOOL OF ENGINEERING

B.Eng. (Hons) MECHANICAL ENGINEERING

SEMESTER 1 EXAMINATIONS 2018/19

ENGINEERING PRINCIPLES

MODULE NO: AME4062

2.

3.

Date:Tuesday January 15th

Time:10.00-12.00

INSTRUCTIONS TO CANDIDATES: 1.

There are <u>FOUR</u> questions.

Answer all questions.

Maximum marks for each part/question are shown in brackets.

(i)

(ii)

(iii)

1. (a) The expression $12 \cos x + 5 \sin x \cosh x$ be written in the form $R \cos(x - a)$ with $-\pi \le a \le \pi$. Determine the values of *R* and *a* (in radians) correct to 3 decimal places.

- (b) With the aid of suitable diagrams, find all of the solutions of the following equations in the given interval to two decimal places:
 - (i) $\sin x = \frac{\sqrt{3}}{2}$ for $0 \le x < 2\pi$ (2 marks)

 $0 \leq x$

 $< 2\pi$

(ii) $\tan x + 3 \cot x = 5 \sec x$ for

5

(6 marks)

(c) Solve the following equations giving your answer to two decimal places:

(3 marks)

(4 marks)

(5 marks)

Please turn the page

 $\boldsymbol{a} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$ and $\boldsymbol{b} = \begin{pmatrix} 4 \\ -1 \\ -1 \end{pmatrix}$ find Given that 2. (a) (i) 3*a* + 2*b* (2 marks) |a| and |b|(ii) (4 marks) $a \bullet b$ (iii) (2 marks) The angle between *a* and *b* (iv) (2 marks) (5 marks) (v) $a \times b$ $\begin{array}{c}3\\1\\5\end{array}$ and |a| = 3, show that х y Given that a =Ĭ Z y $, a \times b =$ (b) |, **b** = *a* • *b* = 18 (10 marks) Please turn the page

3. (a) If
$$\boldsymbol{A} = \begin{pmatrix} 1 & 3 \\ -2 & 5 \end{pmatrix}$$
 and $\boldsymbol{B} = \begin{pmatrix} 3 & 4 \\ -1 & 5 \end{pmatrix}$ find

- (i) 2A 3B (2 marks)
- (ii) **AB**
- (iii) |A|
- (iv) A^{-1}

Hence solve the set of simultaneous equations

$$\begin{array}{r} x + 3y = 7 \\ -2x + 5y = 8 \end{array}$$

(4 marks)

(3 marks)

(2 marks)

(2 marks)

(b) Solve
$$x^2 - 4x + 13 = 0$$
.

(4 marks)

In parts (c) and (d) below, $z_1 = 2 + j11$ and $z_2 = 3 - j4$.

- (c) Find (i) $2z_1 - 3z_2$ (2 marks) (ii) z_1z_2 (2 marks) (iii) \bar{z}_2 (1 marks)
 - (d) Find $|z_2|$ and $\arg(z_2)$ and hence write z_2 in polar **and** exponential form.

(3 marks)

- 4. (a) Use Pascal's Triangle to expand each of the following:
 - (i) $(a+b)^4$
 - (ii) $(x-2)^5$

(6 marks)

(4 marks)

(b) Using the binomial theorem, write down the binomial expansion for the following, up to and including the term x^4 :

(i)	$5\sqrt{1+x}$	$\langle \rangle$		(6 marks)
(ii)	$\frac{\sqrt{1+x}}{\left(1-x\right)^4}$	INA		(9 marks)
	:+A			
S	END	OF QUESTIC	DNS	

Formula Sheet

1. Quadratic Equation

For the equation $ax^2 + bx + c = 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

2. Laws of Logarithms

log AB = log A + log B $log \frac{A}{B} = log A - log B$ $log A^{p} = p log A$

3. Trigonometry

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
$$\cos^2 \theta + \sin^2 \theta = 1$$
$$\tan^2 \theta + 1 = \sec^2 \theta$$
$$\cot^2 \theta + 1 = \csc^2 \theta$$
$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$
$$\cos(A \pm B) \equiv \cos A \cos B \mp \sin A \sin B$$
$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$
$$\sin 2A = 2 \sin A \cos A$$
$$\cos 2A \equiv \cos^2 A - \sin^2 A \equiv 2 \cos^2 A - 1 \equiv 1 - 2 \sin^2 A$$
$$\tan 2A \equiv \frac{2 \tan A}{1 - \tan^2 A}$$

Engineering Principles 1

 $e^{-j\theta}$

 $\sin\theta =$

School of Engineering B.Eng (Hons) Mechanical Engineering Semester 1 Examinations 2018/19 Engineering Principles 1 AME4062

4. If
$$R\cos(x-a) = a\cos(x) + b\sin(x)$$
 then
 $a = \tan^{-1}\left(\frac{b}{a}\right), \quad R = \sqrt{a^2 + b^2}$

5. Complex Numbers

$$re^{j\theta} = r(\cos\theta + j\sin\theta)$$
$$\cos\theta = \frac{e^{j\theta} + e^{-j\theta}}{2}$$

De Moivre's Theorem

$$(r(\cos\theta + j\sin\theta))^n = r^n(\cos n\theta + j\sin n\theta)$$