UNIVERSITY OF BOLTON

WESTERN INTERNATIONAL COLLEGE FZE
 BEng (Hons) MECHANICAL ENGINEERING

SEMESTER ONE EXAMINATION 2018/2019

ENGINEERING PRINCIPLES 1

MODULE NO: AME4062

Date: Tuesday 15th January 2019

INSTRUCTIONS TO CANDIDATES:

CANDIDATES REQUIRE:

Time: 10:00am - 12:00pm

There are SIX questions.

Answer TWO Questions from Part A and TWO Questions from Part B.

All questions carry equal marks.

Marks for parts of questions are shown in brackets.

Electronic calculators may be used provided the data and program storage memory is cleaned prior to the examination.

Formula Sheet (attached)

Western International College FZE
BEng (Hons) Mechanical Engineering
Semester 1 Examination 2018/19
Engineering Principles I
Module No. AME4062

PART A

Q1.
a) Use Partial fractions to expand:

$$
Y(s)=\frac{s^{2}+4 s+5}{\left(s^{2}+2 s+4\right)(s+3)}
$$

(10 marks)
b) Solve the following Logarithmic Equations
i) $\log \left(x^{2}+2\right)=2.6$
(2 marks)
ii) $3\left(10^{0.5 x-2}\right)=96$
c) A machine has seven speeds ranging from $25 \mathrm{rev} / \mathrm{min}$ to $500 \mathrm{rev} / \mathrm{min}$. If the speeds form a geometric progression, determine their value, each correct to nearest whole number.

Q2.
a) In a mechanical system, deceleration ' a ' in m / s^{2}, velocity ' v ' in m / s and distance ' \mathbf{x} ' in m , are related by simultaneous equation given below:

$$
\begin{gathered}
x+2 v+3 a=-7.8 \\
2 x+5 v-a=1.4 \\
5 x-v+7 a=3.5
\end{gathered}
$$

Solve using determinant method to find the acceleration, velocity, and distance.

Western International College FZE
BEng (Hons) Mechanical Engineering
Semester 1 Examination 2018/19
Engineering Principles I
Module No. AME4062

Q2 continued.

b) Two vehicles are accelerating with $\mathrm{a}_{1}=1.5 \mathrm{~m} / \mathrm{s}^{2}$ at 90° and $\mathrm{a}_{2}=2.6 \mathrm{~m} / \mathrm{s}^{2}$ at 145^{0} from one starting point. Determine the vector sum ' $\mathbf{a}_{1}+\mathbf{a}_{2}$ 'and vector difference ' $\mathbf{a}_{1}-\mathbf{a}_{2}$ '. Use appropriate figures to represent your answers.

Q3.
a) If $=7\left(\cos \frac{\pi}{4}+j \sin \frac{\pi}{4}\right)$, using De Moivre's theorem find $\mathbf{z}^{\mathbf{2}}$ (5 marks)
b) The $1^{\text {st }}, 10^{\text {th }}$ and the last terms of an arithmetic progression are $9,40.5$ and 425.5 respectively. Find
i) the number of terms
ii) sum of all terms
iii) the $75^{\text {th }}$ term in the series
c) The law connecting friction F and load L for an experiment is given by

$$
F=a L+b
$$

where a \& b are constants. Given that when $F=5.6, L=8.0$ and when $F=4.4, L=2.0$. Find the following:
i) the value of a \& b using matrices method
ii) the value of F when $L=6.5$

Western International College FZE
BEng (Hons) Mechanical Engineering
Semester 1 Examination 2018/19
Engineering Principles I
Module No. AME4062

PART B

Q4.

A steel cube block of 50 mm side is subjected to a force of 10 kN (tension), 12.5 kN (compression) and 7.5 kN (tension) along x, y and z directions respectively as shown in Figure Q4.

Figure Q4. Steel cube block
Determine the following:
a) Stresses in x, y and z directions
b) Assuming Poisson's ratio as 0.3 , find in terms of modulus of elasticity of the material E, the strains in the direction of each force. (6 marks)
c) If modulus of elasticity $E=200 \mathrm{kN} / \mathrm{mm}^{2}$, find the values of the modulus of rigidity and bulk modulus for the material of the block.
d) The change in volume of the block due to loading specified above.

Western International College FZE
BEng (Hons) Mechanical Engineering
Semester 1 Examination 2018/19
Engineering Principles I
Module No. AME4062

Q5

a) A brass bar, having cross sectional area of $1000 \mathrm{~mm}^{2}$, is subjected to axial forces as shown in Figure Q5a.

Figure Q5a.
Determine the following:
i. Change in length of part $A B, B C$ and $C D$
ii. Total elongation of the bar

Take young's modulus of brass, $E=1.05 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$
b) Three forces are acting on a hook as shown in Figure Q5b.Determine the following:
i. The resultant force in magnitude
(7 marks)
ii. The resultant force in direction

Figure Q5b. Forces on a hook

Western International College FZE
BEng (Hons) Mechanical Engineering
Semester 1 Examination 2018/19
Engineering Principles I
Module No. AME4062

Q6.
A simply supported beam carries concentrated lateral loads at C and D, and a uniformly distributed lateral load over the length DF as shown in Figure Q6.Determine:
i.Reaction loads at the support
ii.Construct the shear force diagram for the beam
iii.Construct the bending moment diagram for the beam
iv.Find the position of maximum bending moment.

Figure Q6.Simply supported beam
Total 25 marks

END OF QUESTIONS

Western International College FZE
BEng (Hons) Mechanical Engineering
Semester 1 Examination 2018/19
Engineering Principles I
Module No. AME4062

FORMULA SHEET

Determinants

$\frac{x}{D_{x}}=\frac{-y}{D_{y}}=\frac{z}{D_{z}}=\frac{-1}{D}$

Matrices

$A^{-1}=\frac{\operatorname{adj} A}{D}$
$X=A^{-1} B$

Series

$U_{n}=a+(n-1) d$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$U_{n}=a r^{n-1}$
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$
$S_{\infty}=\frac{a}{1-r}$
$U_{n}=a+(n-1) d+\frac{1}{2}(n-1)(n-2) C$

Binomial

$(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+$
Validity $|x|<1$

Western International College FZE
BEng (Hons) Mechanical Engineering
Semester 1 Examination 2018/19
Engineering Principles I
Module No. AME4062

Partial Fractions

$\frac{F(x)}{(x+a)(x+b)}=\frac{A}{(x+a)}+\frac{B}{(x+b)}$
$\frac{F(x)}{(x+a)(x+b)(x+c)}=\frac{A}{(x+a)}+\frac{B}{(x+b)}+\frac{C}{(x+c)}$
$\frac{F(x)}{(x+a)\left(x^{2}+b\right)}=\frac{A}{(x+a)}+\frac{B x+C}{\left(x^{2}+b\right)}$

De Moivre's Theorem

$(\cos \theta+j \sin \theta)^{n}=\cos n \theta+j \sin n \theta$

Stress

Normal $\sigma=\frac{P}{A} \quad \mathrm{~A}=\mathrm{x}$-sectional area

$$
\text { Shear } \quad \tau=\frac{P}{A} \quad \mathrm{~A}=\text { shear area }
$$

Strain

Normal $\quad \varepsilon=\frac{\delta \ell}{\ell}$
Shear $\quad \gamma=\frac{x}{y}$ (Angular Displacement in rads in direction of F)

Compound Bars

$P=P_{1}+P_{2}$
$P=\sigma_{1} A_{1}+\sigma_{2} A_{2}$
$\frac{\sigma_{1}}{E_{1}}=\frac{\sigma_{2}}{E_{2}}$,

Western International College FZE
BEng (Hons) Mechanical Engineering
Semester 1 Examination 2018/19
Engineering Principles I
Module No. AME4062

Elastic Constants

$$
\begin{aligned}
& E=\frac{\sigma}{\varepsilon}, \quad G=\frac{\tau}{\gamma} \\
& \varepsilon_{x}=\frac{\sigma_{x}}{E}-v \frac{\sigma_{y}}{E}-v \frac{\sigma_{z}}{E} \\
& \varepsilon_{y}=\frac{\sigma_{y}}{E}-v \frac{\sigma_{x}}{E}-v \frac{\sigma_{z}}{E} \\
& \varepsilon_{z}=\frac{\sigma_{z}}{E}-v \frac{\sigma_{x}}{E}-v \frac{\sigma_{y}}{E} \\
& \varepsilon_{v}=\varepsilon_{x}+\varepsilon_{y}+\varepsilon_{z} \\
& \varepsilon_{v}=\frac{1-2 v}{E}\left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right) \\
& \varepsilon_{v}=\frac{\delta V}{V}
\end{aligned}
$$

Sine Rule: $\quad \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine Rule: $a^{2}=b^{2}+c^{2}-2 b c \cos A$

